



Gamma-ray Large Area Space Telescope



# **GLAST Large Area Telescope**

# LAT Science Working Group Review February 2, 2007

# **Analysis Overview**

Leon Rochester, SLAC



### **Components of the LAT**

- Precision Si-strip Tracker (TKR) 18 XY tracking layers with tungsten foil converters. Single-sided silicon strip detectors (228 µm pitch, 900k strips) Measures the photon direction; gamma ID.
- Hodoscopic Csl Calorimeter(CAL) Array of 1536 Csl(Tl) crystals in 8 layers. Measures the photon energy; images the shower.
- Segmented Anticoincidence Detector (ACD) 89 plastic scintillator tiles. Rejects background of charged cosmic rays; segmentation mitigates self-veto effects at high energy.
- Electronics System Includes flexible, robust hardware trigger and software filters.



The systems work together to identify and measure the flux of cosmic gamma rays with energy ~20 MeV → ~300 GeV.



### **Components of the Analysis**





# **Evolution of the Background Flux Calculation**





# Some Highlights of the Updated Fluxes



### Variations over one day:

#### Update of Albedo $\gamma$ spectrum

Petry, D., 2005, AIP Conf. Proc. **745**, 709-714, astro-ph/0410487

total (black) galactic CR protons (green) He+CNO (purple) galactic CR e+e- (red) albedo (reentrant+splashback) p+pbar (dark blue) albedo (reentrant+splashback) e+e- (light blue) albedo gamma (yellow)

Plus: simulation of South Atlantic Anomaly, satellite rocking



# **Simulation: Based on GEANT4**

#### **Geometry Detail**

Over 45,000 volumes, and growing! Includes: tracker electronics boards mounting holes in ACD tiles spacecraft details and much more

#### **Interaction Physics**

QED: derived from GEANT3 with extensions to higher and lower energies (alternate models available) Hadronic: based on GEISHA (alternate models available)

#### **Propagation**

Full treatment of multiple scattering Medium-dependent range cut-off Surface-to-surface ray tracing.

#### Includes information from actual LAT tests

detailed instrument response dead channels noise etc.

#### **Overall Deadtime Effects**

**Analysis Overview** 

### High-energy $\gamma$ interacts in LAT



#### February 2, 2007: SWG Review



- We turn the energy deposit given by GEANT into the signals that we would record in the detectors:
  - Tracker:
    - tower triggers
    - hits strips when energy is above threshold
    - time-over-threshold ORs with correct gains
  - Calorimeter
    - correct sharing of signal between two ends of crystals (attenuation)
    - signals in small and large diodes, each with two ranges
  - Anticoincidence Detector
    - signals from tiles to both phototubes
    - correct sharing of signals between two ends of ribbons (attenuation)



# **Instrument Triggering and Onboard Data Flow**

# Hardware Trigger



Hardware trigger based on special signals from each tower; initiates readout

- Function: "did anything happen?"
  - keep as simple as possible

Combinations of trigger primitives:



Upon a trigger, all subsystems are read out in ~27μs



### \*using ACD veto in hardware trigger

**Analysis Overview** 

# **On-board Processing**

Onboard filters: reduce data to fit within downlink, provide samples for systematic studies.

- flexible, loose cuts
- The actual FSW filter code is wrapped and embedded in the full detector simulation

• leak a fraction of otherwiserejected events to the ground for diagnostics, along with events ID for calibration • signal/background can be tuned





\*\*current best estimate, assumes compression, 1.2 Mbps allocation.
February 2, 2007: SWG Review 8



# **Trigger and Filter Rates Summary**

### <u>Trigger</u>



- Operating daily-average rate is 2.9kHz
- Peak rate is 6 kHz (watch deadtime)
- For this simulated day, 201 minutes spent in SAA (14%).



**Filter** 

- Gamma filter rate in this configuration is 360 Hz
- Pass any event w/ E>20 GeV: +40 Hz
- Plus other filters for mips and heavy ions
- Handles to reduce this rate significantly if needed



### **Event Reconstruction**





### **Pattern Recognition**





# **Finding/Fitting a Track**







Data Analysis Techniques for High Energy Physics, R. Fruhwirth et al., (Cambridge U. Press, 2000, 2<sup>nd</sup> Edition)

**Analysis Overview** 

February 2, 2007: SWG Review



### **Measuring the Event Energy**



**Analysis Overview** 

February 2, 2007: SWG Review

# **Measuring the Energy Deposit in the Calorimeter**

Three methods

### Parametric Correction (can be used for any track)

- Use the tracks to characterize the shower
  - Position, angle
  - radiation lengths traversed
  - Proximity to gaps
- Correct "raw" energy

### - "Likelihood" (limited energy and angular range)

 uses relation between energy deposit in last layer and in the rest of the shower. Below about 50 GeV, last-layer energy is proportional to the leaked energy.





- Profile Fitting (limited angular range)
  - Fit layer-by-layer deposit to shower shape
  - Best if shower peak is contained in CAL
- Choose best answer among available methods
  - based on expected error for each method







# **ACD Analysis**



Y

-500

Dots show intersection of tracks with planes of ACD tiles.

Because of gaps in the ACD coverage, charged tracks may fail to produce a signal in any tile.

The ACD analysis identifies these gaps to remove sources of background.

Х

We project the track back to the tiles, and ask how close it comes to the nearest struck tile, if any.

-500

500

Π

Х

Because of backsplash, there may be struck tiles that are not associated with the tracks. Segmentation of the ACD allows us to salvage such events.



- Event reconstruction gives us measurements of the energy, direction and position of the incoming photon.
- In addition, it provides very detailed information about each event.
- Given the hardware response, the "performance" of the instrument depends on the analysis strategy.
  - The rich description of the events allows us to construct variables to tune the analyses to reject background while optimizing the signal.
  - The strategy chosen will depend on the science being studied.
- This process will be explored in the next talk.