

Jet 1, pt: 70.0 GeV

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Jet Quenching in Heavy-Ion Collisions

Jet 0, pt: 205.1 GeV

Matthew Nguyen, CERN

aboratoire Leprince-Ringue

March 14th, 2011

- An introduction to jet quenching in heavy-lon collisions
- A (biased) overview of results from RHIC
 - Single Particle Spectra
 - Two-Particle Correlations
- Fully reconstructed jets in heavy ions with CMS
 - Dijet Asymmetries

arXiv:1102.1957

- Jet-Track Correlations
- Outlook

- Above T_c, lattice QCD
 predicts a phase transition
- Quarks and gluons become relevant d.o.f.'s increasing the effective particle density
- Color fields screened over extended region
 → Quark-Gluon Plasma
- Not quite as Stefan Boltzman limit → QGP not an ideal gas

Evidence indicates that a QGP is formed in heavy-ion collisions What is the consequence for hard scattering in such a medium?

Jet Quenching in Heavy Ions

- Partons lose energy as they traverse the dense plasma
- At high p_{T} energy loss is dominated by gluon radiation
- Hadronization thought to occur outside of medium
- Characterize eloss by, e.g., the medium transport coefficient $\hat{q} \propto m_D^2 \sigma \rho$

parton x-section

density

Debye mass (~gT)

"Jet tomography":

- Eloss amounts to calculation of the spectrum of radiated gluons
- For thick media ($\lambda <<$ L), scattering is coherent (LPM regime)

- Various theoretical frameworks:
 - Multiple soft scattering (BDMPS-type)
 - Few hard scattering (GLV-type)
 - Other approaches: Higher-twist, AdS-CFT, etc.
- Models vary in their treatment of
 - The space-time evolution of the system
 - Approximations in their treatment of the radiation itself
- Different models give quantitatively different results!

Pessimist: "Hard partons are not a well calibrated probe of medium properties"

Optimist: "QCD radiation far from vacuum is a fertile area of research"

 $\hat{q} \equiv \hat{q}(\vec{x},t)$

Jet Fragmentation in-Medium

Typical approach: Eloss of parton followed by vacuum FF A recent approach takes into account the full evolution

Theory: Important to consider radiation beyond the leading parton Experiment: Important to probe wide dynamic range

The Nuclear Modification Factor quantifies the departure of particle yields from "vacuum" QCD

$$R_{AA} \equiv \frac{N_{AA}}{\langle N_{coll} \rangle N_{pp}} \sim \frac{\text{Medium-Modified}}{\text{Vacuum-Like}}$$

The baseline is p+p scaled by the *number of binary collisions* (N_{coll}) \rightarrow assumes A+A is the product of incoherent p+p collisions (high p_T)

A *Glauber Model* is used to relate measured particle multiplicities to N_{coll} and other geometric quantities (e.g., impact parameter)

Hence, we can tell a *central* collision:

From a *peripheral* one:

Single Particles at RHIC

Strong dependence of R_{AA} on particle species What can we learn from all this?

Jet Quenching

Particle Production in HI

- Thermal production dominates at low p_T (hydrodyamics)
- At intermediate p_T phase space is dense enough for coalescence, particle production driven by # of valence quarks
- Only hard processes scale with N_{coll}, focus on p_T > 5-6 GeV/c where fragmentation dominates

R_{AA} at High p_T

Heavy quark shouldn't radiate, yet electrons from heavy–flavor lose energy Suggests picture of Eloss is incomplete \rightarrow collisional Eloss?

Dihadron Correlations at RHIC

At lower p_T, jet(?) correlations are recovered, but with very non-jet-like shapes

Correlations can be fit to a two-component ansatz:

- 1) Broadened peak with a dip at $\Delta \phi = \pi$
- 2) Suppressed, but unmodified jet peak

What is the source of modified shape?

- Enhancement of large angle radiation?
- A jet-medium interaction, e.g., a Mach cone?
- Systematic effect from subtraction of the underlying event?

Limitations

- Complicated dependence on geometry
 - $\circ~$ High p_{T} trigger bias towards surface jets
 - \circ High p_T partner bias towards tangential jets
- Near-side fragmentation bias
 - $\circ~$ Initial parton energy depends on p_{T} of trigger and partner
 - $\,\circ\,$ Makes it difficult to extract initial parton energy
- Two solutions:
 - Correlations using direct photons
 - Full jet reconstruction

Tangential jet

Direct γ-h Correlations

- Compton scattering dominant
 Study the eloss of quarks
- To LO, γp_T = Inital parton p_T
- Transparent to medium ($R_{AA} \sim 1$)
- γ's tag an unbiased sample of jets!

FF's from γ-h

Fragmentation function measurable from photon-hadron correlations

Medium-Modified FF's

$I_{AA} \sim$ the ratio the medium to vacuum fragmentation functions

Starting to probe the evolution of parton shower in-medium However, further reach is limited by both statistics and systematics

Where Are We?

Large background of soft particles, dN_{ch}/dη ~ 1600 for 5% central PbPb @ 2.76 TeV

A schematic view of a jet measurement in heavy ions

Jets are reconstructed from energy reaching calorimeters

Partons lose energy as they traverse the dense medium

Some jet energy lost to

- -Low p_T particles
- -Large angle radiation
- -Material interactions, decays, etc.

Modified jet fragmentation may result in:

- A different fraction of jet energy reaching the calorimeters
- A different response for non-linear calorimeters

Jet Reconstruction at RHIC

At RHIC, difficult to disentangle jets from the soft background

Jets at the LHC

A dijet in a central PbPb collision in CMS

At LHC energies, jets with p_T of order 100 GeV/c cleanly separable from background fluctuations in central PbPb collisions

The CMS Detector

Ideal to reconstruct jets of $p_T > 100$ GeV/c and charged tracks down to < 1 GeV/c \rightarrow Allows to measure jet fragmentation out ξ of 4-5

- Minimum bias collisions are triggered by a coincidence on either side of the HF or BSC
- Jet are triggered at HLT with a p_T = 50 GeV/c threshold (uncorrected, background subtracted)
- The jet trigger is fully efficient around corrected p_T of 100 GeV/c

Triggers

CÉRN

Background Subtraction Method

1) Calculate background in ieta slices

(3) Re-calculate background excluding jets

- Iterative Cone (R=0.5) algorithm run on subtracted towers
- Background energy recalculated excluding jets
- Jet algorithm rerun on background subtracted towers, now excluding jets, to obtain final jets

Method: O. Kodolova et al., EPJC (2007) 117.

in

- Collision centrality determined from the energy in the forward calorimeters
- Dijet Selection
 - $\circ~$ Leading jet: p_{_{T,1}} > 120 GeV/c, $|\eta| < 2$
 - $\,\circ\,$ Subleading jet: p_{_{T,2}} > 50 GeV/c, $|\eta|$ < 2
 - Azimuthal Angle: $\Delta \phi_{12} > 2/3 \pi$ radians
- Monte Carlo
 - o PYTHIA 6.423, tune D6T
 - Adjusted for isospin ratio of Pb(208)
 - Embedded in real data or simulated data using the HYDJET generator

Leading Jet p_T Distributions

No strong modification to shape of leading jet spectrum

Dijet Azimuthal Correlations

No strong angular deflection of reconstructed jets

Jet Quenching

Angular Decorrelation Quantified

No angular decorrelation beyond systematic uncertainties

Dijet p_T Asymmetry

Dijet p_T Asymmetry

Striking enhancement of asymmetry with increasing centrality

Dijet Imbalance Quantified

Smooth decrease in the fraction of balanced jets with increasing centrality Note: Dijets in which no subleading jet found above threshold are included

Jet-Track Correlations

Main idea: Use charged tracks to trace the fate of the energy lost by subleading jet

CERN

Asymmetry Dependence of Fragmentation

- Both data and MC show that dijet asymmetry is also apparent in charged tracks
- In MC, rare asymmetric dijets are due to the presence of a third jet
- Relative abundance of tracks in the 3 ranges is largely unchanged with asymmetry

- In data the fraction of energy carried by low p_T tracks increases with asymmetry
- An enhancement of low p_T tracks at large angles is observed in asymmetric dijets

Missing p_T

To explore momentum balance to low p_T over all angles, calculate the "missing p_T "

Sum the track transverse momenta projected onto the leading jet axis:

$$p_T^{||} \equiv \sum_{\text{tracks}} -p_{\text{T,track}} \cos(\phi_{\text{track}} - \phi_{\text{leading jet}})$$

Jet Quenching

Missing p_T: Data vs. MC

Missing p_T: In vs. Out-of-Cone

Asymmetric events in MC show significant energy beyond R=0.8, carried by high p_T tracks \rightarrow 3 jet events

Little modification of jet fragmentation in-cone

Majority of p_T balance recovered by low p_T tracks outside of R=0.8 cone

Conclusions

- Jet quenching well established at RHIC, but details elusive
- Large jet quenching in PbPb collisions leads to new observations
 - $\circ~$ No large azimuthal decorrelation
 - $\,\circ\,$ Large momentum imbalance of jets
- Jet-track correlations demonstrate that
 - $\circ~$ Energy is transferred to very low z particles
 - This energy is deposited outside the typical jet radius
- Data places constraints on the nature of parton energy loss and should challenge conventional models

Where Are We?

We've gained insight into where the radiated energy *doesn't* go Localizing it in phase space is a work in progress

New Theoretical Ideas

Casalderrey-Solana, Milhano, Wiedemann arXiv:1012.0745

Medium acts as "frequency collimator" effectively decoupling the soft modes of the jet

Identified Jets

Identified jets probe the flavor dependence of Eloss

- γ +jet \rightarrow quark jets
- 3 jet events \rightarrow gluon jets
- μ-tagged, displaced vertex
 - \rightarrow b-quark jets

Medium expected to change the hadro-chemistry of jet framgentation

PID'd fragmentation functions can be measured with ALICE

Particle flow jet reconstruction clusters individual particles
 → Use of charged particle tracks reduces sensitivity of jet energy scale to quenching effects

Tracking in the high multipicity environment is challenging!

Mar. 14th, 2011

Jet Quenching