First SDHCAL results from $1 \mathbf{m}^{3}$ test beam data

Vincent Boudry
École polytechnique M
in behalf of CALICE
LCWS'12, Arlington, TX 23/10/2011

Title:IN2P3Filaire-Q
Creator:Adobe Illust CreationDate:1/28/2 I annuanel evel'?

FOREWORDS

- Preliminary results from August and May runs
- Raw performances of the Semi-Digital HCAL, $1 \mathrm{~m}^{3}$ based on $1 \times 1 \mathrm{~cm}^{2}$ GRPC
- response to single beam particles
- Uncalibrated (cell-wise) calorimeter
- no use the Ebeam knowledge
- Not a Particle Flow performances estimation
- Data driven analysis
- MC needs tuning to data (tbd)
- esp. particle ID.
- Mainly results from 1 integrated analysis
- merging techniques from complementary analysis (not presented here)
- rush effort of the SDHCAL group and CALICE referee's to validate results \rightarrow CALICE preliminary tag

Semi-Digital HCAL Concept

Ultra-granular HCAL can provide a powerful tool for the PFA leading to an excellent Jet energy resolution.
It is based on two points:
1- Gaseous Detector
Gaseous detectors like GRPC are homogenous, cost-effective,

$1 \mathrm{~cm}^{2}$ pad and allow high longitudinal and transverse segmentation.
2- Embedded electronics Readout A simple binary readout leads to a very good energy resolution However, at high energy the shower core is very dense and saturation shows up 2-bit readout improves on energy resolution at energies> 30 GeV

Structure of an active layer of the SDHCAL

48 layers of $0.12 \lambda_{1}=5.76 \lambda_{1}$

Beam conditions

- Beams of pions, electrons and muons at CERN
- 2 weeks in May 2012 @ SPS H2
- $\pi+: 20,30,40,50,60,70,80 \mathrm{GeV}$
- e- :10, 20, 30, 40, 50, 60 GeV
- μ dedicated runs...
- 2 weeks in August (\& September) 2012 @ SPS H6
- $\pi+: 5,7.5,10,15,20,25,30,40,50,60,70,80,90,100 \mathrm{GeV}$
- + few μ dedicated runs
- Beam composition:
- all runs contain μ 's (esp. e-) and cosmics
- \quad 's runs filtered by 4 mm Pb to remove e- (esp. for $\mathrm{E} \geq 20 \mathrm{GeV}$)
- proton component in HE ris runs (@ $\mathrm{E} \geq 20 \mathrm{GeV}$)
- $\delta \mathrm{E}_{\text {beam }} / \mathrm{E} \sim 1 \%$
- Large beam profile
- low rates ($\varepsilon \searrow$ at $f \geq 100 \mathrm{~Hz}$)
- Rate monitored online by μ tracks and π tracks segments
- Only run with $f \leq 1000$ part/spill $\Leftrightarrow \varphi \leq 100 \mathrm{~Hz} / \mathrm{cm}^{2}$

Configuration:

- GRPC set-up \& response
- gas: TFE $93 \%, \mathrm{CO}_{2} 5 \%, \mathrm{SF}_{6} 2 \%$
- $\mathrm{HV}=6.9 \mathrm{kV}$
- the average MIP induced charge being around 1.2~pC
- Thresholds set at $114 \mathrm{fC}, 5 \mathrm{pC}$ and 15 pC (0.1; 4; 12.5 mip)
- Dead zones:
- 1/3 slab of plane \# 46 dead in May ; repaired for August runs
- $1^{\star} 47$ planes available during 1st week fo August.
- 7 ASIC switched off (and not replaced) $\leftrightarrow 1$ \% dead zone.
- Gains
- All set to 1 (no gain corr.) during this data taking
- (will be done for next period)

Data taking

- Triggerless mode : record events until memory is full, then data transfer and restart.
- Power-Pulsed mode : According to the time spill structure
- ($N \times 400 \mathrm{~ms}$ (PS)*, 10s (SPS) every 45 s)
- Physics events are built as follows: 3 consecutive BC (200ns)
- Based on cosmic studies

Hits left by charged particles

Selection

μ Track selection

- ε, μ estimated from tracks reconstructed from other layers
- hits are grouped in clusters if sharing an edge
- isolated clusters ($\Delta r_{\text {ingeqer }}>12 \mathrm{~cm}$) dropped
- Tracks reconstructed if remaining $\mathrm{N}_{\text {bejes }}>7$,
- with at least 1 layer on each side of investigated one (except 1st and last layer)
- χ^{2} with $\Delta x, y=\operatorname{Span}(c m)$ in $(x, y) / \sqrt{ } 12$
- Efficiency

Nb tracks with ≥ 1 hit $\delta r \leq 3 \mathrm{~cm}$ from track impact in plane
Nb of tracks

- Multiplicity =

〈Nb hit in cluster closest to tracks, if any〉

Particle ID

- Topological:
- Principal Component Analysis (PCA) on all hits or clusters
- 3 main \perp axis eigenvalues $\lambda_{i} \equiv \sigma$ (hits) on axis $\lambda_{1}, \lambda_{2}, \lambda_{3}$ with $\lambda_{1}<\lambda_{2}<\lambda_{3}$
- $\lambda_{3}=$ longitudinal comp.
- Transverse Ratio $\left(\lambda_{1} \oplus \lambda_{2}\right) / \lambda_{3} \rightarrow$ muons vs e, π
- Shower start
- $\lambda_{1 p}, \lambda_{2 p}$ idem to λ_{1}, λ_{2} restricted to 1 plane
- 1st interaction plane (FIP) \equiv
- $\lambda_{1 p^{\oplus}} \lambda_{2 p}>1.5 \mathrm{~cm}$
- $N_{\text {ht }}^{\text {plane }}>5$

Particle ID (cont'd)

- Density
- $\mathrm{V}_{1}=\left(\Sigma_{\text {ajefs }} \mathrm{N}_{25}^{\text {bijer }}\right) / \mathrm{N}_{\text {hits }}$
- $\mathrm{N}_{25}^{\text {leger }}=\mathrm{N}_{\text {nits }}$ in 5×5 around barycenter in 1 layer
- $\mathrm{V}_{2}=\mathrm{FD}_{30} / \ln \left(\mathrm{N}_{\text {hits }}\right)$
- Fractal dimension:

$$
\mathrm{FD}_{3 \mathrm{D}}=\frac{1}{|I|} \sum_{n \in I} \frac{\ln \left(N_{\text {hit }} / N_{\text {cube }}(n)\right)}{\ln (n)}
$$

$$
N_{\text {cube }}(n) \equiv \text { number of cube in } I=\{2,3,4,6,8,12,16\}
$$

- Clustering:
- removal of isolated hits and tagging of overlapping events
- MST à la charm-II using $\quad D_{\alpha, \beta}=\mid$ plane $_{\alpha}-$ plane $_{\beta} \mid+2 \times\left(\left|I_{\alpha}-I_{\beta}\right|+\left|J_{\alpha}-J_{\beta}\right|\right)$
- $\mathrm{N}_{\text {mis }}>25 ; \lambda_{3}>4.5 \mathrm{~cm} ; \lambda_{2} / \lambda_{3}>0.01$.

Event selection

- μ rejection:
- Transverse ratio $T R \geq 0.1 \rightarrow 98 \%$ of $\mu^{\prime} \mathrm{s}$

TR

e/I separation

60 GeV GeV Mixed run

Fractal Dimension V_{2}
7.5 GeV GeV $\boldsymbol{\pi}$ run ($\supset \mathrm{e}$-)

- Operation on clusters
- Negligeable loss of m's @ HE
- few \% e-residual contamination @ LE

10\% variation of cut \Rightarrow Systematics

Vincent.Boudry@in2p3.fr

Variation of cut with $E_{\text {beam }}$

pion run energy (GeV)	5	$7.5-15$	20	$30-40$	$50-60$	$70-80$
$\min V_{1} \cdot V_{2}$ value	0.065	0.06	0.055	0.05	0.045	0.04

Leakage reduction

- FP number ≤ 4.
- removes cosmics (lateral entrance)
- First Interaction Plane (FIP) \# < 15
- removal of late interacting hadrons.

OR

> The last shower plane (LP) \# < 42
> or Nhit(last 7 planes) / Nhit(first 30 planes) <0.15

- The first (last) plane (FP, LP) of the reconstructed shower
- containing a hit:
- could be \neq from interaction plane

After all Selection

Energy [GeV]	Number of r's events
5	9504
7.5	15074
10	20406
15	33405
20	78391
25	59495
30	53179
40	48720
50	76566
60	38917
70	30893
80	32964

Results

Raw number of hits (binary HCAL)

20 GeV пт's

60 GeV т's

Nhit response (binary HCAL)

- Saturation observed for $\mathrm{E}_{\text {vean }} \geq 30 \mathrm{GeV}$
- Offset (~ 4 hits) compatible with noise over 3 clock cycles
- Fit by quadratic function:

$$
E=(C+D \cdot N h i t) \text { Nhit }
$$

yields:
$\mathrm{C}=54.3 \mathrm{MeV}$
D $=0.009 \mathrm{MeV}$

Linearised response

SDHCAL response (multi-thr.)

SDHCAL response (multi-thr.); Nhits

- Min of χ^{2} with

$$
\chi^{2}=\sum_{i}^{N} \frac{\left(E_{\text {true }}^{i}-E_{\text {rec }}^{i}\right)^{2}}{E_{\text {true }}^{i}}
$$

over 10, 20, 30, 40, 50 and 60 GeV samples ($1 / 3$ of stat.)

- Parametrised as quartic function of Nhit
- Valid for single - known - particle...
- N1 = \# of Hits \geq thr1, <thr2
- N2 = \# hits \geq thr $2,<$ thr3
- N3 = \# hits \geq thr3

Nhit $=\mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3$
$E_{\text {rec }}=\alpha N 1+\beta N 2+\gamma N 3$.
$\alpha, ß, \gamma=f($ Nhit $)$

SDHCAL response

- Linearity $\leq 5 \%$ over full range
- Tuning done for $\mathrm{E}_{\text {bem }} \geq 10 \mathrm{GeV}$
- e- contamination @ low E.

SDHCAL: binary vs multi-thr.

SDHCAL binary \& multi-thr modes

- Raw resolution of untuned calorimeter
- SDHCAL
- DHCAL
- Single pions, filtered for leakage
- Err = Stat $\oplus \delta($ Gauss, CB fit)
\oplus cut var $\pm 10 \%$ SHCAL
- Visible improvement of resolution for $\mathrm{E}_{\pi} \geq 50 \mathrm{GeV}$
- $\leq 10 \%$ at 80 GeV .
- Raw performances (no pattern recognition, PFA, ...)

Conclusion \& prospects

- The CALICE technological SDHCAL-GRPC prototype was successfully tested with its 48 layers and its $6 \lambda_{\text {I }}$ in different places (SPS, PS)
- Power-Pulsing allows optimal conditions (temperature, noise) and it was the running mode during this year different TB.
- Excellent data quality was obtained in TB (especially in August with gas installation under our own control) with smooth running conditions (no intervention for the 2-week TB period).
- Preliminary results without data treatment (no gain correction, no local calibration, ...) indicate an excellent single particle energy resolution on pions
- Multi-threshold mode brings significant improvement at $E_{\pi} \geq 50 \mathrm{GeV}$.
- Comparison with simulation is ongoing and will bring rich information to better understand the hadronic showers.

Back up

Micro structure of GRPC response...

With muons (beam + cosmics), one can derive efficiencies and multiplicities per plane, per ASIC, per channel or per area smaller than a cell.

Muons recorded during august test beam.

Hit efficiency vs Z

Shower start = layer for which a hit has at least 8 3D-Nearest Neighbours if layer+3 has at least 12 Nearest Neighbours.

Then for each layer, clusterise the hits, removing hits which are at more than 3 rms (spatial distribution) from the center of gravity.

Find the layer which has the biggest spatial rms of the hit distribution. That rms is the radius.

Half is the distance between the shower start layer and the layer that has the biggest spatial rms.

Comparison with simulation (I)
-Use standalone GEANT4 application to simulate the prototype.
-Digitisation included in the prototype

Note

