

1

Current Status of Semi-DHCAL R&D in European

Manqi Ruan

Outline

- Introduction: Case of Semi-DHCAL;
- R & D: MiniDHCAL and 1 m² prototype
 - Electronic, Mechanical, Gas system;
 - DAQ and data format;
- TB: Search for the best design
 - TB setting & Statistic of different test beam period;
 - TB Performance:
 - Efficiency & Multiplicity scan with HV, Threshold, Gas;
 - Efficiency with semi conductivity glass;
 - Shower profile with 1m² prototype
- Next step: 1 m³ prototype
- MC & Analysis: Integration to full detector
- Conclusion

Case for a Semi Digital HAdronic CALorimeter

- 1 or 2 bits of information per cell
 - Finer granularity \rightarrow 1×1 cm² × 48 planes
 - Ideal for a PFA approach
 - Cheaper, simpler, more robust detectors
 - GRPC, MGRPC, µMEGAS, GEM's
 - Gaseous detectors
 - insensitivity to neutrons
 - narrower showers (99% of hits in 70×70 cm² for 100 GeV π)
 - suppression of big fluctuations
 - Recovery of information
 - Counting: 3 thresholds
 - Topology: clustering 25/09/2009

CALICO Prototypes: Calorimeter for L GRPC: Prototypes: Mini DHCAL and 1 m²

 8×8, 32×8, 50×32, 100×32, 100×100 with 1 cm²-pad : already produced (with different option) and tested.

MGRPC

- 32×8, 100x100, produced & tested

Electronics: HarDROC (Hadronic Rpc Detector Read Out Chip)

- AMS SiGe 0.35µm, 16 mm²
- 64 channels

Calorimeter for

Digital/analogue output

- 2 independant thresholds
- low consumption
 - < 10 μW/ch
 - Power pulsing
- Digital memory
 - 128 events
 - ASIC ID (8b), BC ID (24b), hits
- Large gain range (6bits)
 - Channel wise
- ^{25/09/2009} • X-talks < 2%
 - Threshold > 10 fC

OMEGA-LAL

* DIRAC: Another ASIC developed in IPNL/LAPP aims at a threshold of 3 fC

Mini DHCAL

- 8-layer, 800 µ thick PCB buried and blind vias x-talk <0.3 %
- 4 hardroc chips
- Readout FPGA → USB
- 8×32 pads detector

Acquisition modes : different modes are allowed:

- a) Train (ILC mode)
- b) External trigger : cosmic rays & test beam

Data output: 25ମାଧିମାର and analogue

1 m² GRPCs were built with different options

The 1 m² project

DIF

- 10-layer board (6 for signals) designed and prototype produced
- FirmWare & SoftWare operationnal and tested in beam (with 4 HR μMegas card)

ASU

- 8-layer board designed and produced
- 500×33.3×1.2 mm³
- Connections between adjacent PCB foreseen
- ASICs were tested and plugged

Software

Acquisition software based on US/XDAQ developed

LCIO format for reconstructed DHCAL Header & DIF part (proposal v0.01)

back of envelop discussion V. Boudry, G. Grenier, R. Kieffer

```
EVENT::LCEvent
{
   int _runNumber;
                            11
   int _eventNumber; // Global Trig Count == # evt
   EVENT::long64 _timeStamp; // Mean timestamp from Hit/DIF
                               // TB: Large BC
                               // For ILC: Larae BC since run start.
   std::string __detectorName: // Detector version ??
                     _colMap; // List of collections
   LCCollectionMap
   std::vector< std::string > _colNames; // Name of collections
   LCParametersImpl _params; //
   LCCollectionSet _notOwned; //
}
EVENT::LCGenericObject
{
// ->DIF Collection
     - int DIF_ID+Module_ID
                                  // DIF_ID (48-144 ==> 7-8b)
11
                                  // + Module_ID (40 barrel + 24 Endcap ==> 6b)
11
11
    - int ATC
                                  // delta GTC / DTC
11
    - int DTC
                                  // Diff Trig Counter == #evt vu par la DIF
//( - float TimeDiff
                                  // Time2Previous event )
                                  // BC from run start.(32b)
11
    - int LargeBC
```

}

TB Performances:

2009 SPS CERN TB Setting ¹⁶

- DAC's Thresholds: lower 120 fC / higher 450fC
- Plateau: 7.2 to 8 kV
 - -> Efficiency between 80 and 98%
- Lower multiplicity is preferred.
 - -> Best ratio multiplicity/efficiency: around 7.4 kV
- Until now the licron coated detector seems to be the best candidate:

-> it has the **lowest multiplicity** and shows **very good efficiency** performance.

Multiplicity moving as expected => lowering as threshold increases.

Efficiency **decreasing** down to 80% at 1.1 pC threshold.

 Cooperation with Tsinghua University: Provide us with semi-conductivity glass 1.0¹⁰ ohm/cm;

2 chambers with 32*8 pads: 1.1mm at both side + licorn coating & 1.1mm on cathode + 0.83 mm at readout + statguard coating

Semi conductivity glass has good efficiency at high event rate (>10kHz/cm^2), ²⁵While classical glass has significant efficiency drop when event rate exceed ²¹ 100Hz/cm^2

Next step: 1 m³ prototype

IR

The aim is to build a realistic prototype, validating the technological solution we propose for the ILD concept.

Technological prototype is made with:

- 40 planes of 1m²
- One plane composed by:
 20 mm s.steel absorber + 6 mm GRPC/PCB
- > A mechanical structure supporting the planes.
- A parallel gas distribution system.

Important points:

- Mechanical structure development:
 1m³ of (Absorber+GRPC) is about 6 ton weight.
- Use of gas system with re-cycling option.
- Semi Digital readout of 368.640 channels : DAQ, event building, & data storage.

1 m³: shower containment

- With a **1m³ DHCAL**, hadronic shower could be mainly contained, even for high energy pions (about 100 GeV).
- We already try to evaluate the **energy** deposition to help the 1m³ design.
- The 40 planes of 9216 channels each, will permit us to have the complete profile of the showers, with a very high granularity.
- As the HARDROC2 will have

3 thresholds, we try to evaluate the number of fired pads for different thresholds values, to better reconstruct the energy.

25/09/2009

25

MC: Full Detector

Occupancy study

	Barrel	Barrel	EndCap	EndCap	Ring	Ring
	N_{hits}	N_{asic}	N_{hits}	N_{asic}	N _{hits}	N_{asic}
e⁺e⁻→qq /	207.6	124.6	117.8	77.8	6.7	4.5
GigaZ,30evt/s	6.2k/s	3.7k/s	3.5k/s	2.3k/s	201/s	135/s
	0.1/s	0.05/3	0.1/s	0.06/s	0.036/s	0.02/s
Minimal bias	0.78	0.64	20.2	17.0	0.038	0.033
GigaZ,10evt/s	7.8/s	6.4/s	202/s	170/s	0.38/s	0.33/s
			0.06/5	0.05 /s		
Minimal bias	1.06	0.91	29.7	25.1	0.058	0.05
Nominal	700/s	600/s	19.6k/s	16.6k/s	38.3/s	33/s
660evt/s			4.6/s	4/s		
Black: expected N _{hits} /N _{asic} per event;						
22/01/2009	Blue: expected N _{hits} /N _{asic} per second;					21

22/01/2009

Calorimeter for

hits Red: N_{hits}/N_{asic} per second on the hottest Asic

MC Simulation: our RPC has sufficient rate capability!

ILD Integration

Calorimeter for ILC

Simulations were done with Mokka software integrating DHCAL geometry.

C

- **Event produced:** single klong & uds.
- First analysis was done using Marlin with single threshold at 0.1 MIP in Mark Thomson's PFAnalysis module.
- Particle Flow Algorithm need to be optimized to use the **full potential** of a **multi threshold DHCAL**.
- More work has to be done for it.

SemiDigitalHCAL with PFA:

Conclusions & perspectives

- A Semi-Digital Gaz Hadronic Calorimeter with embedded readout is a very promising candidate for future linear colliders experiments
- A mini SDGHCal based on first generation readout with GRPC and 1 m² prototype were successfully tested in laboratory and in test beam at CERN
- A lot have been learned from the test beam experiments: searching for the best design of the RPC for ILC
- A technological prototype "1 m³" (RPC or MGRPC) is funded and expected in 2009-2010
- MC Simulation and Analysis are well undergoing