Jet quenching au RHIC: résultats expérimentaux

Journée thématique "Jet quenching" IPN-Orsay, November 14th, 2005

David d'Enterria LLR – Ecole Polytechnique, IN2P3, Paris

Overview

- "Jet physics" results @ RHIC (w/o full jet reco):
 - (1) Inclusive high p_{T} spectra, (2) di-hadron ϕ , η high- p_{T} triggered correlations.

confronted to non-Abelian radiative energy loss in QGP "paradigm".

- \bigcirc High p_T (leading) hadron suppression data in central AA:
 - 1. Magnitude \Rightarrow Very dense medium: $dN^{g}/dy \sim 1000$ (~ $dN_{ch}/d\eta$). OK
 - 2. Transverse momentum dependence: flat p_{T} . OK
 - 3. Centrality dependence. OK
 - 4. Light-meson species dependence (π^0 vs. η). **OK**
 - 5. Center-of-mass energy dependence (SPS-20 GeV, RHIC-62,200 GeV). OK
 - 6. Non-Abelian radiation. OK
 - 7. Path-length dependence. OK ?
 - 8. System-size (CuCu vs. AuAu) dependence. OK ?
 - 9. Heavy vs. light quark suppression. OK ?
- \bigcirc Modified high p_{τ} di-hadron (ϕ , η) correlations in central AA:
 - 1. Disappeareance of away-side azimuthal dijet peak. OK
 - 2. Enhanced ("volcano"-like) away-side associated yield at lower p_T . (?)
 - 3. Broadening of near-side pseudo-rapidity correlations. OK

"Jet quenching" as a QGP signal

- Multiple final-state non-Abelian (gluon) radiation off the produced hard parton induced by the dense QCD medium
- Parton energy loss ~ medium properties:

GLV:
$$\Delta E \propto \alpha_S^3 C_R \frac{1}{A_\perp} \frac{dN^g}{dy} L \propto \text{(g density, L)}$$

BDMPS Wiedemann: $\langle \Delta E \rangle \propto \alpha_S C_R \langle \hat{q} \rangle L^2 \propto (\hat{q} \text{ coeffic., } L^2)$

Flavor dependent energy losses:

 $\Delta E_{loss}(g) \ge \Delta E_{loss}(q) \ge \Delta E_{loss}(Q)$ (color factor) (mass effect)

 Energy is carried away by gluons emitted inside (broader) jet cone: dE/dx ~ α_s (k²_T)

Prediction I: Suppression of high p_T leading hadrons: dN/dp_T SPS,RHIC,LHC
 Prediction II: Modification of (di)jet correlations: d²N_{pair}/dφdη RHIC,LHC

Predition III: Modified energy- & particle- flow within full jet 4 LHC

Jet physics at RHIC: experimental limits

Full jet reconstruction w/ standard algorithms is unpractical at RHIC due to huge soft background (large "underlying event"):

 $p+p \rightarrow jet+jet \ [\sqrt{s} = 200 \text{ GeV}]$

Feasible at LHC for E_{iet} >~ 50 GeV

Au+Au \rightarrow X [$\sqrt{s_{_{NN}}}$ = 200 GeV]

"Jet physics" at RHIC (I): Single inclusive high p_T spectra

 <u>Alternative I</u>: Study the energy modifications suffered by the highest p_T hadron in the event ("leading" hadron of the jet) in AA (compared to pp):

 $p+p \rightarrow h+X \ [\sqrt{s} = 200 \ GeV]$

Au+Au \rightarrow h+X [$\sqrt{s_{_{NN}}}$ = 200 GeV]

Many interesting results obtained from this "first-order" approach !

"Jet physics" at RHIC (II): Di-hadron azimuthal correlations

Alternative II : Study the azimuthal correlations in AA relative to pp between highest p_T hadron ("trigger") & any other "associated" hadron:

 $p+p \rightarrow h_1+h_2+X \ [\sqrt{s} = 200 \text{ GeV}]$

Au+Au \rightarrow h₁+h₂+ X [$\sqrt{s_{_{NN}}}$ = 200 GeV]

"Jet physics" at RHIC (II): Di-hadron azimuthal correlations

Alternative II : Study the azimuthal correlations in AA relative to pp between highest p_T hadron ("trigger") & any other "associated" hadron:

 $p+p \rightarrow h_1+h_2+X \ [\sqrt{s} = 200 \text{ GeV}]$

Au+Au \rightarrow h₁+h₂+ X [$\sqrt{s_{_{NN}}}$ = 200 GeV]

Many interesting results also obtained from this "2nd-order" approach !

High p_⊤ leading hadron spectra at RHIC & jet-quenching models: Good agreement data ↔ theory

Inclusive single spectra at high p_{T} (AA, dA, pp)

High quality large-p_T data (up to ~20 GeV/c) available in pp, dA and AA collisions:

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

Leading hadron spectra in free space: pp @ 200 GeV

• High $p_{\tau} \pi^0$, h[±] spectra up to ~15 GeV/c. Good theoret. (NLO pQCD) description

 $p+p \rightarrow \pi^0 X$ E*d³0/dp³ (mb.GeV⁻².c³) PH^{*}ENIX 10 **10**⁻² PHENIX Data 10⁻³ KKP FF 10 ----- Kretzer FF 10 10^{-®} (PDF: CTEQ6M) 10⁻⁷ PHENIX Collab. 10⁻⁸ PRL 91, 241803 hep-ex/0304038 <u>Δ</u>σ/σ (%) 40 **b**) 20 0 -20 -40 4 **c**) (Data-QCD)/QCD KKP FF 2 0 4 d) 2 0 Ō 5 10 15 p_T (GeV/c)

(mp GeV⁻²c₃) 10 GeV⁻²c₃) 10⁻¹ 10⁻² \blacksquare p+p → h[±]+X @ \sqrt{s} = 200 GeV [STAR] • $p+p \rightarrow h^{\pm}+X @ \sqrt{s} = 200 \text{ GeV}$, $\eta = 0 [BRAHMS]$ vs. NLO pQCD [W.Vogelsang]: ----- PDF: CTEQ6M, FF: KKP, scales: μ=p_τ --- PDF: CTEQ6M, FF: Kretzer, scales: μ=p_τ — PDF: CTEQ6M, FF: KKP, scales: µ=2p_T PDF: CTEQ6M, FF: KKP, scales: µ=p_T/2 ^ер10⁻³ "р/₀10⁻⁴ др10⁻⁵ **10**⁻⁶ **10**⁻⁷ BRAHMS 10⁻⁸ 2 6 8 10 p_T (GeV/c)

 $p+p \rightarrow h^{\pm}X$

- High quality data: sensitive to different parametrizations of gluon FF
- Well calibrated (experimentally & theoret.) p+p baseline spectra at hand.

Leading hadron spectra in AuAu@200 GeV

Suppressed high p_{T} hadroproduction in central AuAu

Hadrons are suppressed. Photons are not.

• Colorless hard probes (direct γ insensitive to final-state) are unsuppressed.

Confirms that AuAu collision = incoherent sum of pp collisions (i.e. "N_{coll} scaling" expectation is valid) for perturbative probes.

Hadrons are suppressed in AuAu. Not in dAu.

- Initial-state cold nuclear matter effects (shadowing, Cronin) are small at RHIC mid-rapidity.
- High p_τ suppression in central AuAu is due to final-state effects (absent in "control" dAu experiment)

High p_T suppression: "Universal" for all light mesons

• Common suppression pattern (magnitude, p_{τ} , centrality, ... dependence) for π^0 and η :

Same flat R_{AA} ~ 0.2 up to 10 GeV/c

Universal suppression for light mesons indicates it is at partonic level prior to q,g fragmentation into leading meson according to vacuum FFs.

Magnitude of the suppression: medium properties

Data vs. models (pQCD+ non-Abelian parton energy loss) comparison:

Very large gluon densities: dN^g/dy~1000 consistent w/ measured dN_{ch}/dη ~700

All medium properties imply energy densities >> E_{crit QCD} (assuming thermalizat.)

IPN-ORSAY, NOV 14TH, 2005

High p_T suppression: p_T -dependence

• Flat p_{T} - dependence described by parton energy loss models:

• Underlying LPM interference for single gluon bremsstrahlung would give: $\Delta E_{loss} \sim log(p_T)$

• Combination of different effects (convolution w/ realistic gluon energy distribution, local parton p_{τ} slope, ...) yields constant suppression factor.

IPN-OR5AY, NOV 14TH, 2005

High p_{T} **suppression:** \sqrt{s} **dependence**

In the second second

High p_{T} meson suppression in AA @ 17.3 GeV ?

 Revised pp reference: high p_T π⁰ production in (0-10%) central PbPb at SPS is slighted suppressed or consistent w/ "N_{coll}-scaling":

• Confirmed by NA57 (& NA49) recent high p_{τ} results in central PbPb at SPS:

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

High p_T suppression: non-Abelian nature

Excitation function (√s-dependence) & non-Abelian nature of energy loss in agreement w/ parton energy loss calculations:

(i) rising initial parton density with \sqrt{s}

(ii) increasing relative fraction of hard-scattered gluons (at fixed p_{τ}) with \sqrt{s}

"Jet quenching" model + 2-D longitudinal plasma expansion

High p_T suppression: centrality dependence

• Increasing centrality (N_{part}) \Rightarrow increased L, $\rho \Rightarrow$ increased suppression

Agreement data ↔ models as expected for diff. suppressions at different (geometrical) parton production points. High p_⊤ leading hadron spectra at RHIC & jet-quenching models:
Less good agreement data ↔ theory ?

High p_T suppression: system-size dependence

- Smaller CuCu system adds significant precision at intermediate N_{part}~100:
- Theory predicts: $ln(R_{AA}) \propto N_{part}^{-2/3}$

- Both PHENIX & STAR preliminary data seem to exclude $\alpha = -2/3$
- Fit to STAR N_{part}^{α} prefers $\alpha \sim -1/3$ (circumf./area ~ A^{-1/3} ~ $N_{part}^{-1/3}$?)
- PHENIX data seems to indicate a "steeper" slope at low N_{part}.
- In the provide the provide the provide the provide the provide the provided the

High p_T suppression: path-length dependence

• R_{AA} vs ϕ w/ respect to reaction plane :

- 2 times more suppression out-of-plane ("long" direction) than in-plane ("short" direction).
- Glauber parton energy loss model predicts only ~50% increased "out-of-plane" vs "in-plane" π⁰ emission

PQM – Dainese, Loizides, Paic EPJ C 38, 461(2005)

- Azimuthal anisotropy stronger than "canonical" L² (or L) pathlength dependence.
- Source of extra azim. anisotropy above p_τ ~ 4 GeV/c ?

IPN-OFSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

Heavy quark suppression via non-photonic electrons (I)

Semi-leptonic decays of open charm and bottom mesons = main source of high p_T ("non-photonic") electrons.

Au+Au suppression

proton-proton baseline:

IPN-OFSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

Heavy quark suppression via non-photonic electrons (II)

• Latest single $e^{\pm} R_{\Delta \Delta}$ indicates large suppression in central AuAu:

• Note: STAR – PHENIX R_{AA} agrees, but the pp refs are different by $\sim 50\%$.

IPN-ORSAY, NOV 14TH, 2005

Heavy quark suppression via non-photonic electrons (III)

Models need larger medium densities: dN^g/dy=3500, <q> = 14 GeV²/fm than for light mesons R_{AA} to reproduce data ! Unclear consistency w/ dN_{cb}/dy ~ 600

IPN-ORSAY, NOV 14TH, 2005

Heavy quark suppression via non-photonic electrons (IV)

Models need too dense medium to account for observed suppression in data:

Possible resolutions of the disagreement (or a combination of them ?):

(1) Larger suppression of beauty ... or charm dominance up to electron $p_T \approx 10$ GeV?

- (2) Extra gluon-fragmentation production of charm affected by energy loss ? (would also explain PHENIX proton-proton data ?)
- (3) Hadronic (+ partonic) energy loss?
- (4) Radiative + collisional energy loss ? Other ... ?

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

High p_τ di-hadron φ,η correlations in high-energy AuAu collisions

"Jet physics" at RHIC (II): di-hadron azimuthal correlations

Study the azimuthal correlations in AA relative to pp between the highest p_T hadron ("trigger") & any other "associated" hadron:

 $p+p \rightarrow h_1+h_2+X \ [\sqrt{s} = 200 \text{ GeV}]$

Dijets via high p_T di-hadron ϕ correlations: pp, dAu

- Two-particle correlations: $h^{\pm} h^{\pm}$, $\pi^{0,\pm} h^{\pm}$. Trigger: highest p_{T} (leading) hadron.
- Associated $\Delta \phi$ distribution (e.g. "assorted": 2 GeV/c < p_T^{assoc} < $p_T^{trigger}$)

Dijets via high p_T di-hadron ϕ correlations: AuAu

Correlation Function

Hermonic

 $=a_0$

Jet Finctio

- Same dN_{pair}/dφ analysis as in pp (dAu) but 2 extra "complications":
 - (1) Increased "underlying event" background
 - (2) Collective elliptic flow (harmonic) contribution

Delicate subtraction procedure (esp. in finite acceptances).

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

Di-hadron AuAu $\Delta \phi$ correlations: Results at high p₊

Near-side jet-like Gaussian peak unmodified (AuAu ~ dAu ~ pp)

Away-side peak disappearance: "monojet"-like topologies in central AuAu.

STAR, PRL 90, 082302 (2003)

Centrality dependence of away-side disappearance globally described by parton energy loss models (increasing medium traversed):

IPN-ORSAY, NOV 14TH, 2005

Di-hadron AuAu Δφ correlations: Results at lower p_τ

- "Lost" away-side energy is recovered at lower p_{τ} values.
- Strongly modified away-side $\Delta \phi$ correlations in central AuAu:

IPN-OR5AY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

• Double peak structure at at $\pi \pm 1.2$ rad reminiscent of Mach wave conical shock ("sonic boom") \Rightarrow speed of sound accessible

Note: gluon Cerenkov-like emission also proposed [access to medium index refrac. $n=1/cos(\theta_c)$]

IPN-ORSAY, NOV 14TH, 2005

Di-hadron Δη correlations: AuAu, dAu, pp (I)

 Significant broadening of near-side pseudorapidity correlations in AuAu compared to pp, dAu. ("stretching" of jet cone along η).

IPN-ORSAY, NOV 14TH, 2005

Di-hadron Δη correlations: AuAu, dAu, pp (II)

- Significant broadening of near-side pseudorapidity correlations in AuAu compared to pp,dAu. ("stretching" of jet cone along η).
- Coupling of g radiation w/ longitudinal expanding medium ?

Armesto, Salgado, Wiedemann PRL 93, 242301 (2004)

"Cartoon" Summary: Jet-quenching at RHIC

"QCD vacuum" & "cold QCD medium"

Jet profile in pp (dAu) collisions:

Near-side width: $\langle j_T \rangle \sim 600 \text{ MeV/c}$ unmodified in pp,dAu

Away-side width and acoplanarity unmodified in pp and dAu

"hot & dense QCD Medium"

Jet profile in AuAu central collisions:

Factor ~5 suppression of leading hadron (very large initial parton densities: dN^{g}/dy ~1000) Disappearance of back-to-back peak ("monojets") "Double peak" structure at lower p_T in away-side ("sonic boom" in medium ?) Dijet broadening in η

(coupling of g radiation w/ expanding medium ?)

Strong QCD medium effects at work !

Summary

- Large amount of precision high-p_T hadron production data after 5 years of operation at RHIC allows to quantitatively address jet physics in QCD medium (w/o full jet reco).
- Differential observ. of suppressed hadro-production in central Au+Au provide:
 - stringent constraints on underlying quenching mechanism.
 - direct access to the density & transport properties of QCD medium.
- Are "jet quenching" data due to radiative energy loss in a QGP ?
 - Good agreement with calculations on:
 - Leading hadrons: Magnitude, \sqrt{s} , p_T , centrality, (light) species dependence
 - Dihadron correlations: disappeareance of away-side azimuthal dijet peak, Broadening of near-side pseudo-rapidity correlations.
 - Some tests are weak at present:
 - Few details missing in system-size dependence
 - No sharp test of L² dependence yet.
 - Heavy quark energy loss larger than expected
- New insights of medium properties from new observables (c_s via "Mach cone") ?
- LHC = enormous reach, qualitatively new observ. (full jet reco, jet-jet, jet-γ,Z ...)

IPN-ORSAY, NOV 14TH, 2005

backup slides ...

Di-jet properties: experimental observables

- Spread of hadrons around jet axis, relative orientation of the 2 jets: j_T, k_T, p_{out}
- Multiplicity of assoc. hadrons (area under peaks): "fragmentation function" D(z)

"Fragmentation functions": Central AuAu

• Associated ($p_{Tassoc} = 0.15 - 4 \text{ GeV/c}$) near- and away- side hadron p_T spectra:

Associated near-side jet yields overall enhanced (enhanced underlying evt.)
 Associated away-side jet yields "shifted down" in p_⊤: spectra closer to pure

"soft" inclusive hadron production ("thermalized")

IPN-OFSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR, PARS)

Jet production in AA : (a few) theoretical expectations

Medium-modified FFs:

X.N.Wang&M.Gyulassy PRL 68, 1480 (1992)

→ Valuable diagnostic tools of QCD medium properties (dN^g/dy, <q₀>, c_s, ...)

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR PARS)

Intermediate p_{T} mesons suppressed. Baryons are not

• Strongly enhanced baryon (p, Λ) production at $p_{T} \sim 2 - 4$ GeV/c

- Strong centrality dependent baryon/meson: ratio well above "perturbative" (pp) ratios.
- Clear deviation from std. vacuum fragmentation functions (large non-pQCD effects) calls for extra baryon production mechanism: recombination.
- Above p_τ ~ 6 GeV/c: Recovery of "vacuum" fragmentation ratio. Baryons suppressed too.

Baryon vs. meson "fragmentation functions"

However ... Associated yields similar for meson & baryon triggers.

- Magnitude and centrality-dependence of associated (near- & away- side) hadron p_T spectra for baryon & meson triggers show small differences.
- Jet-like production but different suppression for leading baryons and mesons !?

IPN-ORSAY, NOV 14TH, 2005

How to compare high p_T spectra in AA and pp ?

Α

B

High p_τ particles issue from hard scatterings describable by pQCD:

"Factorization theorem":

$$d\sigma_{AB \to bX} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{f}_{a'p}(\mathbf{x}_{a}, \mathbf{Q}^{2}_{a}) \otimes \mathbf{f}_{b'p}(\mathbf{x}_{b}, \mathbf{Q}^{2}_{b}) \otimes d\sigma_{ab \to cd} \otimes \mathbf{D}_{b'c}(\mathbf{z}_{c}, \mathbf{Q}^{2}_{c})$$

Independent scattering of "free" partons:

$$f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$$

A+B = "simple superposition of p+p collisions"

Nuclear Modification Factor:

Initial State Radiation

Hard Scattering

Parton

Distribution

Parton

Distribution

$$d\sigma_{AB \rightarrow hard} = A \cdot B \cdot d\sigma_{pp \rightarrow hard}$$

At impact parameter b:

$$dN_{AB \rightarrow hard} (b) = T_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$$

$$geom. nuclear overlap at b$$

$$T_{AB} \sim \# NN \text{ collisions ("Ncoll scaling")}$$

IPN-ORSAY, NOV 14TH, 2005

Photon, W, Zetc.

Final State Radiation

Fragmentation

High p_T suppression: system-size dependence

• R_{AA} for Cu+Cu @ $\sqrt{s_{NN}}$ = 200 GeV

- Suppression observed for central Cu+Cu
- Models scale density from central Au+Au
 All models show reasonable to good agreement

DAVID D'ENTERRA (LLR, PARS)

Di-hadron AuAu: $\Delta \phi$ correlations (III)

Same $dN_{pair}/d\Delta \phi$ result in polar coords. now: 0

Au+Au peripheral

IPN-ORSAY, NOV 14TH, 2005

DAVID D'ENTERRA (LLR PARS)

Jet production in the "QCD vacuum" (pp collisions)

- Jet : Collimated spray of hadrons in a cone ($R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \sim 0.7$) with 4-momentum of original fragmenting parton
- Leading hadron takes away large fraction (<z> ~0.6 –0.8 @ RHIC) of parent parton p_T
- Jet balanced back-to-back by other hard-scattered "parton" (jet, direct γ , ...)

IPN-ORSAY, NOV 14TH, 2005

Jet production in "QCD media" (pA, AA collisions)

Initial-state effects (accessible via pA colls.): k_{τ} broadening (Cronin enhancement) (Leading-twist) shadowing or gluon saturation (CGC) Final-state effects (accessible in AA colls.): Parton energy loss due to medium-induced

gluon-strahlung in hot & dense environment

"Fragmentation functions": x_E distributions pp,dAu

• Away-side associated hadron p_{τ} spectra:

 $x_{E} \sim z/\langle z_{trig} \rangle$ represents away jet fragmentation z $\langle z_{trig} \rangle = 0.85$ measured* $\Rightarrow D_{\pi}^{q}(z) \sim e^{-6z}$

$$x_E = \frac{\vec{p}_{T,\text{trig}} \cdot \vec{p}_{T,\text{asso}}}{|\vec{p}_{T,\text{trig}}|^2}$$

 x_{E} variable: Two-particle equivalent of fragmentation variable z

 $x_E \simeq z_{\rm assoc}/z_{\rm trig}$

At high p_{T} , i.e. when di-jets are nearly back-to-back.

$$\frac{1}{N_{trig}}\frac{dN}{dx_E} \cong \frac{z_{trig}}{N_{trig}}\frac{dN}{dz_{assoc}} \propto z_{trig}D(z_{assoc})$$