Corrélations γ – π^0

dans les collisions d'ions lourds

François Arleo

CERN

Sommaire

Introduction	
Sommaire	
Sondes dures	
Production simple	Sondes color
Corrélations	Corrélations
Résultats	 pourquoi
Résumé	 comment
Perspectives	Phénoménol

rées vs. sondes aveugles

 $\gamma - \pi^0$

logie à RHIC et LHC

[FA, Aurenche, Belghobsi, Guillet JHEP 2004] [FA, prochainement]

Schématiquement

1. Sondes colorées

Corrélations

Introduction • Sommaire

Sondes dures

Production simple

Résultats

Résumé

Perspectives

2. Sondes aveugles

Schématiquement

- Introduction
- Sommaire
- Sondes dures
- Production simple
- Corrélations
- Résultats
- Résumé
- Perspectives

1. Sondes colorées

- interaction avec le milieu dense
 - pertes d'énergie, écrantage de Debye

2. Sondes aveugles

Schématiquement

- Introduction
- Sommaire
- Sondes dures

Production simple

Corrélations

Résultats

Résumé

Perspectives

- 1. Sondes colorées
 - interaction avec le milieu dense
 - pertes d'énergie, écrantage de Debye
 - jets, pions durs, quarkonia lourds

2. Sondes aveugles

Schématiquement

- Introduction
- Sommaire
- Sondes dures

Production simple

Corrélations

Résultats

Résumé

Perspectives

1. Sondes colorées

- interaction avec le milieu dense
 - pertes d'énergie, écrantage de Debye
- jets, pions durs, quarkonia lourds
- 2. Sondes aveugles
 - étalonnage des effets "nucléaires"
 - shadowing / saturation, effet Cronin

Schématiquement

- Introduction
- Sommaire
- Sondes dures

Production simple

Corrélations

Résultats

Résumé

Perspectives

• • • • •

- 1. Sondes colorées
 - interaction avec le milieu dense
 - pertes d'énergie, écrantage de Debye
 - jets, pions durs, quarkonia lourds
- 2. Sondes aveugles
 - étalonnage des effets "nucléaires"
 - shadowing / saturation, effet Cronin
 - Drell-Yan, W[±] / Z, photons prompts

Schématiquement

- Introduction
- Sommaire
- Sondes dures

Production simple

Corrélations

Résultats

Résumé

Perspectives

- 1. Sondes colorées
 - interaction avec le milieu dense
 - pertes d'énergie, écrantage de Debye
 - jets, pions durs, quarkonia lourds
- 2. Sondes aveugles
 - étalonnage des effets "nucléaires"
 - shadowing / saturation, effet Cronin
 - Drell-Yan, W[±] / Z, photons prompts

Comparons sondes colorées et sondes aveugles !

Deux possibilités

- Introduction • Sommaire
- Sondes dures
- Production simple
- Corrélations
- Résultats
- Résumé
- Perspectives

1. Production simple colorée vs. production simple aveugle

Deux possibilités

Introduction

-	<u> </u>				
•	S	ond	des	s du	ires

Production simple

Corrélations

Résultats

Résumé

Perspectives

1. Production simple colorée vs. production simple aveugle

Deux possibilités

Introduction

SommaireSondes dures

Production simple

Со	rré	latio	ns

Résultats

Résumé

Perspectives

1. Production simple colorée vs. production simple aveugle

Deux possibilités

- Introduction • Sommaire
- Sondes dures
- Production simple
- Corrélations
- Résultats
- Résumé
- Perspectives

- 1. Production simple colorée vs. production simple aveugle
- 2. Production double colorée aveugle

Deux possibilités

- Introduction
- SommaireSondes dures
- Production simple
- Corrélations
- Résultats
- Résumé
- Perspectives

- 1. Production simple colorée vs. production simple aveugle
- 2. Production double colorée aveugle

Deux possibilités

- Introduction
- SommaireSondes dures
- Production simple
- Corrélations
- Résultats
- Résumé
- Perspectives

- 1. Production simple colorée vs. production simple aveugle
- 2. Production double colorée aveugle

Introduction

Dr	odu	otion	cim	
E I	out	ICTION	5111	JIE

Succès

• Limites • Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

[cf. D. d'Enterria]

Introduction

- Production simple
- Succès
- Limites
- Terminologie
- Corrélations
- Résultats
- Résumé
- Perspectives

Du côté expérimental

- [cf. D. d'Enterria]
- Facteur de quenching pour différents hadrons (π , K, ...)

Introduction

- Production simple
- Succès
- Limites
- Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

[cf. D. d'Enterria]

- Facteur de quenching pour différents hadrons (π , K, ...)
- Facteur de quenching pour les photons prompts

Introduction

- Production simple
- Succès
- Limites
- Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

[cf. D. d'Enterria]

- Facteur de quenching pour différents hadrons (π , K, ...)
- Facteur de quenching pour les photons prompts
- Du côté de la phénoménologie [cf. U. Wiedemann]

Introduction

- Production simple
- Succès
- Limites
- Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

[cf. D. d'Enterria]

cf. U. Wiedemann

- Facteur de quenching pour différents hadrons (π , K, ...)
- Facteur de quenching pour les photons prompts
- Du côté de la phénoménologie
 - Nombreuses analyses

Introduction

- Production simple
- Succès
- Limites
- Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

[cf. D. d'Enterria]

- Facteur de quenching pour différents hadrons (π , K, ...)
- Facteur de quenching pour les photons prompts
- Du côté de la phénoménologie [cf. U. Wiedemann]
 - Nombreuses analyses
 - Extraction des paramètres du milieu: \hat{q} , dN_g/dy , ϵ , ...

Introduction

- Production simple
- Succès
- LimitesTerminologie
- Corrélations
- Résultats
- Résumé
- Perspectives

Du côté expérimental

[cf. D. d'Enterria]

- Facteur de quenching pour différents hadrons (π , K, ...)
- Facteur de quenching pour les photons prompts
- Du côté de la phénoménologie [cf. U. Wiedemann]
 - Nombreuses analyses
 - Extraction des paramètres du milieu: \hat{q} , dN_g/dy, ϵ , ...

Succès de la production simple inclusive en *p p*, d Au, et Au Au depuis plusieurs années

Introduction

- Production simple
- Succès
- Limites
- Terminologie

Corrélations

Résultats

Résumé

Perspectives

Du côté expérimental

• Facteur de quenching pour différents hadrons (π , K, ...)

- Facteur de quenching pour les photons prompts
- Du côté de la phénoménologie [cf. U. Wiedemann]
 - Nombreuses analyses
 - Extraction des paramètres du milieu: \hat{q} , dN_g/dy, ϵ , ...

Succès de la production simple inclusive en *p p*, d Au, et Au Au depuis plusieurs années

cependant ...

cf. D. d'Enterria

Introduction

r rouuction simple	Prod	luction	simp	le
--------------------	------	---------	------	----

Succès

Limites

• Terminologie

Corrélations

Résultats

Résumé

Perspectives

1. Energie du parton

Introduction

Production simple

Succès

LimitesTerminologie

Corrélations

Résultats

Résumé

Perspectives

1. Energie du parton

Spectres simples inclusifs en pQCD à l'ordre dominant

$$\frac{d\sigma^{\pi}}{d\mathbf{p}_{\perp} d\eta} = \sum_{i,j,k=q,g} \int dx_1 dx_2 F_{i/p}(x_1, M) F_{j/p}(x_2, M)$$
$$\times \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \frac{d\widehat{\sigma}_{ij}k}{d\mathbf{p}_{\perp} d\eta} \frac{dz}{z^2} D_{\pi/k}(z, M_F)$$

Introduction

Production simple

Succès

LimitesTerminologie

Corrélations

Résultats

Résumé

Perspectives

1. Energie du parton

Spectres simples inclusifs en pQCD à l'ordre dominant

$$\frac{d\sigma^{\pi}}{d\mathbf{p}_{\perp} d\eta} = \sum_{i,j,k=q,g} \int dx_1 dx_2 F_{i/p}(x_1, M) F_{j/p}(x_2, M)$$
$$\times \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \frac{d\widehat{\sigma}_{ij}k}{d\mathbf{p}_{\perp} d\eta} \frac{dz}{z^2} D_{\pi/k}(z, M_F)$$

ne permettent pas de déterminer

- I'énergie k_{\perp} du parton donc la variable $z = p_{\perp_{\pi}}/k_{\perp}$
- les fonctions de fragmentation modifiées par le milieu

Introduction

-			
Prod	luction	simn	
1 100	uction	Julip	

Succès

Limites

• Terminologie

Corrélations

Résultats

Résumé

Perspectives

1. Energie du parton

2. Emission en surface

Introduction

-			
Prod	luction	simn	
1100	uction	Simp	

Succès

Limites

Corrélations

Terminologie

Résultats

Résumé

Perspectives

1. Energie du parton

2. Emission en surface

Biais du trigger

Dans un milieu très opaque, les particules observées proviennent toutes de la surface [Eskola et al. 2004]

Introduction

-			
Prod	luction	simn	
1100	uction	Simp	

Succès

Limites

Terminologie

Corrélations

Résultats

Résumé

Perspectives

1. Energie du parton

Biais du trigger

L'information sur le profil de densité d'énergie est perdue !

Introduction	
--------------	--

Production simple

Succès

LimitesTerminologie

Corrélations

Résultats

Résumé

Perspectives

Nécessité d'aller au-delà de la production simple inclusive afin de mieux comprendre:

- Ia dynamique de fragmentation modifiée par le milieu
- le profil de densité d'énergie

I	n	۱t	r	0	d	u	C	ti	0	n	

Production simple

Succès

LimitesTerminologie

Ŭ

Corrélations

Résultats

Résumé

Perspectives

Nécessité d'aller au-delà de la production simple inclusive afin de mieux comprendre:

la dynamique de fragmentation modifiée par le milieu
le profil de densité d'énergie

Corrélations photon prompt — pion dur

I	r	ľ	t	r	0	d	u	С	ti	0	n	

Succès

LimitesTerminologie

Corrélations

Résultats

Résumé

Perspectives

Nécessité d'aller au-delà de la production simple inclusive afin de mieux comprendre:

la dynamique de fragmentation modifiée par le milieu
le profil de densité d'énergie

Corrélations photon prompt — pion dur

- Corrélations azimutales
- Corrélations en impulsion

I	r	ľ	t	r	0	d	u	С	ti	0	n	

Succès

LimitesTerminologie

Corrélations

Résultats

Résumé

Perspectives

Nécessité d'aller au-delà de la production simple inclusive afin de mieux comprendre:

la dynamique de fragmentation modifiée par le milieu
le profil de densité d'énergie

Corrélations photon prompt — pion dur

- Corrélations azimutales
- Corrélations en impulsion

Terminologie

Introduction				
	Intr	odu	Intin	n
muouuon	II IU	ouu	ictio	

Production simple

```
SuccèsLimites
```

```
    Terminologie
```

Corrélations

Résultats

Résumé

Perspectives

Nombreuses sources de photons

- Photons prompts
 - produits dans les collisions NN
- Photons thermiques
 - rayonnement du plasma quarks-gluons
- Photons de décroissance
 - décroissances radiatives

 $p_{\perp} \gg \Lambda_{\rm qcd}$

 $p_{\perp} = \mathcal{O}\left(T\right)$

 $\pi^0 \to \gamma \ \gamma$

Corrélations

A l'ordre dominant en α_s

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Corrélations

A l'ordre dominant en α_s

La balance d'impulsion

$$z_{\gamma\pi} \equiv -\frac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2} \simeq z$$

permet d'estimer la variable de fragmentation z

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Corrélations

A l'ordre dominant en α_s

Calcul perturbatif des distributions de corrélation dans les collisions p p et A A à RHIC et LHC

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

$$\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$$

- **Production simple**
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

$$+\sum_{i,j,k=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) F^A_{j/h_2}(x_2) \ \frac{dz}{z^2} \ D_{\gamma/k}(z,\mu) \ \frac{d\sigma^{\kappa}_{ij}}{d\vec{p}_T d\eta}$$

Production simple

- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Photons directs

AΞ

AΞ

- "type Drell-Yan"
- Photons de fragmentation
 - "type jet"

 \sim

- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Distinction arbitraire: dépend de l'échelle !
 - seule la somme directe + fragmentation est pertinente
- Possibilité de différencier expérimentalement
 - critères d'isolement (activité hadronique ou non)
 - cinématique

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Calcul perturbatif

• ordre $\mathcal{O}(\alpha_s \alpha)$ en p p et A A

 \bullet ordre $\mathcal{O}\left(\alpha_{s}^{2}\,\alpha\right)$ en $p\,p$

Introduction

- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Calcul perturbatif
 - \blacklozenge ordre $\mathcal{O}\left(\alpha_{s}\,\alpha\right)$ en $p\;p$ et A A
 - ordre $\mathcal{O}\left(\alpha_s^2 \alpha\right)$ en p p
- Distribution de partons CTEQ6L
 - avec / sans shadowing (EKS98)

Introduction

- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Calcul perturbatif
 - ordre $\mathcal{O}(\alpha_s \alpha)$ en p p et A A
 - ordre $\mathcal{O}\left(\alpha_s^2 \alpha\right)$ en p p
- Distribution de partons CTEQ6L
 - avec / sans shadowing (EKS98)

Introduction

- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Calcul perturbatif
 - \blacklozenge ordre $\mathcal{O}\left(\alpha_{s}\,\alpha\right)$ en $p\;p$ et A A
 - ordre $\mathcal{O}\left(\alpha_s^2 \alpha\right)$ en p p
- Distribution de partons CTEQ6L
 - avec / sans shadowing (EKS98)

Introduction

- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Calcul perturbatif
 - ordre $\mathcal{O}(\alpha_s \alpha)$ en $p \ p$ et A A
 - ordre $\mathcal{O}\left(\alpha_s^2 \alpha\right)$ en p p
- Distribution de partons CTEQ6L
 - avec / sans shadowing (EKS98)
- Fonctions de fragmentation KKP (π^0) et BFG (γ)
 - avec / sans pertes d'énergie

Modèle

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Diffusion multiple diminue l'énergie du parton de k_{\perp} à $k_{\perp}-\epsilon$

Modèle

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Diffusion multiple diminue l'énergie du parton de k_{\perp} à $k_{\perp} - \epsilon$

Modèle simple de fonctions de fragmentation modifiées

[Wang, Huang, Sarcevic 1996]

$$zD_{h/k}^{\text{med}}(z,\mu) = \int_0^{(1-z)k_\perp} d\epsilon \ \mathcal{P}(\epsilon,k_\perp) \ z^* D_{h/k}(z^*,\mu)$$

with $z^* = \frac{E_h}{k_\perp - \epsilon} = \frac{z}{1 - \epsilon/k_\perp}$

Modèle

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Diffusion multiple diminue l'énergie du parton de k_{\perp} à $k_{\perp} - \epsilon$

Modèle simple de fonctions de fragmentation modifiées

[Wang, Huang, Sarcevic 1996]

$$zD_{h/k}^{\text{med}}(z,\mu) = \int_{0}^{(1-z)k_{\perp}} d\epsilon \underbrace{\mathcal{P}(\epsilon,k_{\perp})}_{\text{with } z^{*}} z^{*} D_{h/k}(z^{*},\mu)$$

with $z^{*} = \frac{E_{h}}{k_{\perp} - \epsilon} = \frac{z}{1 - \epsilon/k_{\perp}}$

Distribution de probabilité

Fonctions de fragmentation modifiées

Contraintes

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Domaine étendu dans la variable $z_{\gamma\pi}$

Contraintes

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

Domaine étendu dans la variable $z_{\gamma\pi}$

• coupures assymétriques: $p_{\perp_{\pi}}^{\text{cut}} \ll p_{\perp_{\gamma}}^{\text{cut}}$

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\pi}}^{\text{cut}} \ll p_{\perp_{\chi}}^{\text{cut}}$
- Taux raisonnables

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\pi}}^{\text{cut}} \ll p_{\perp_{\gamma}}^{\text{cut}}$
- Taux raisonnables

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\tau}}^{\text{cut}} \ll p_{\perp_{\tau}}^{\text{cut}}$
- Taux raisonnables
 - $p_{\perp_{\gamma}}^{\mathrm{cut}} \ll \sqrt{s}/2$
- pQCD à l'œuvre

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\tau}}^{\text{cut}} \ll p_{\perp_{\tau}}^{\text{cut}}$
- Taux raisonnables
 - $p_{\perp_{\gamma}}^{\mathrm{cut}} \ll \sqrt{s}/2$
- pQCD à l'œuvre
 - $\bullet \ p_{\perp_\pi}^{\rm cut} \gg \Lambda_{_{\rm QCD}}$

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\pi}}^{\text{cut}} \ll p_{\perp_{\chi}}^{\text{cut}}$
- Taux raisonnables

•
$$p_{\perp_{\gamma}}^{\mathrm{cut}} \ll \sqrt{s}/2$$

pQCD à l'œuvre

$${}^{\rm cut} p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm _{QCD}}$$

$$\Lambda_{\rm QCD} \ll p_{\perp_{\pi}}^{\rm cut} \ll p_{\perp_{\gamma}}^{\rm cut} \ll \sqrt{s} \,/2$$

Contraintes

- Introduction
- Production simple
- Corrélations
- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

- Domaine étendu dans la variable $z_{\gamma\pi}$
 - coupures assymétriques: $p_{\perp_{\pi}}^{\text{cut}} \ll p_{\perp_{\pi}}^{\text{cut}}$
- Taux raisonnables

•
$$p_{\perp_{\gamma}}^{\text{cut}} \ll \sqrt{s}/2$$

pQCD à l'œuvre

$$p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm QCD}$$

$$\Lambda_{\rm \tiny QCD} \ll p_{\perp_\pi}^{\rm \tiny cut} \ll p_{\perp_\gamma}^{\rm \tiny cut} \ll \sqrt{s} \, / 2$$

RHIC

$$p_{\perp_{\pi}}^{\text{cut}} = 3 \text{ GeV} \qquad p_{\perp_{\gamma}}^{\text{cut}} = 10 \text{ GeV}$$

LHC

$$p_{\perp_{\pi}}^{\text{cut}} = 5 \text{ GeV} \qquad p_{\perp_{\gamma}}^{\text{cut}} = 25 \text{ GeV}$$

François Arleo, November 14, 2005

Balance $z_{\gamma\pi}$

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2}$$

Balance $z_{\gamma\pi}$

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2}$$

Impulsion transverse de la paire q_{\perp}

$$q_{\perp} = |\mathbf{p}_{\perp_{\pi}} + \mathbf{p}_{\perp_{\gamma}}|$$

Balance $z_{\gamma\pi}$

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2}$$

Impulsion transverse de la paire q_{\perp}

 $q_{\scriptscriptstyle \perp} \ = |\mathbf{p}_{\scriptscriptstyle \perp_{\pi}} + \mathbf{p}_{\scriptscriptstyle \perp_{\gamma}}|$

Masse invariante

$$m_{\pi\gamma}^2 = 2 \left[p_{\perp\pi} p_{\perp\gamma} \operatorname{ch}(y_{\pi} - y_{\gamma}) - \mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma} \right]$$

Balance $z_{\gamma\pi}$

Introduction

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2}$$

Impulsion transverse de la paire q_{\perp}

 $q_{\scriptscriptstyle \perp} \ = |\mathbf{p}_{\scriptscriptstyle \perp_{\pi}} + \mathbf{p}_{\scriptscriptstyle \perp_{\gamma}}|$

Masse invariante

$$m_{\pi\gamma}^2 = 2 \left[p_{\perp\pi} p_{\perp\gamma} \operatorname{ch}(y_{\pi} - y_{\gamma}) - \mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma} \right]$$

Contraintes additionnelles

- ordre dominant en α_s
- production à mi-rapidité: $y_{\gamma} = y_{\pi} = 0$
- photon produit directement: $p_{\perp_{\gamma}} = k_{\perp}$

Balance $z_{\gamma\pi}$

Production simple

Corrélations

- Corrélations
- Calcul perturbatif
- Ingrédients
- Modèle
- Distribution de probabilité
- Fonctions de fragmentation modifiées
- Coupures cinématiques
- Variables

Résultats

Résumé

Perspectives

$$z_{\gamma\pi} \equiv -rac{\mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma}}{|\mathbf{p}_{\perp\gamma}|^2} = rac{k_{\perp}}{p_{\perp\pi}} \equiv z$$

Impulsion transverse de la paire q_{\perp}

$$q_{\perp} = |\mathbf{p}_{\perp_{\pi}} + \mathbf{p}_{\perp_{\gamma}}| = k_{\perp}|1 - z|$$

Masse invariante

$$m_{\pi\gamma}^2 = 2 \left[p_{\perp\pi} \, p_{\perp\gamma} \, ch(y_{\pi} - y_{\gamma}) - \mathbf{p}_{\perp\pi} \cdot \mathbf{p}_{\perp\gamma} \right] = 4 \, k_{\perp}^2 \, z$$

Combinaison des variables k_{\perp} et z uniquement

RHIC

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

Résumé

Introduction

Corrélations

Résultats

RHIC
LHC

Résumé

Perspectives

Production simple

• Corrections d'ordre supérieur

Taux de comptage

RHIC

- Effet significatif à RHIC
- Pertes d'énergie et shadowing très différents

RHIC

Effets très prononcés à grand z

Introduction

Corrélations

Résultats • RHIC

● LHC

Résumé

Perspectives

Production simple

Taux de comptage

RHIC

- Reflète les fonctions de fragmentation
- Effets très prononcés à grand z

RHIC

Double fragmentation >> simple fragmentation à RHIC
 Importance de la dynamique dans la suppression

RHIC

Double fragmentation 2 simple fragmentation à RHIC
 Importance de la dynamique dans la suppression

LHC

- **Production simple**
- Corrélations
- Résultats
- RHIC
- LHC
- Corrections d'ordre supérieur
- Taux de comptage

Résumé

LHC

Introduction

Corrélations

Résultats

• RHIC

Résumé

Perspectives

● LHC

Production simple

Taux de comptage

LHC

Production $\gamma - \pi^0$ dominée par la double fragmentation Coupures cinématiques cruciales

Différence importante de $\gamma - \pi^0$ à $\gamma - \gamma$

Structures intéressantes de la suppression

■ Rappelle les fonctions de fragmentation $D_{\gamma/k}^{\text{med}}(z,\mu)$

Nouvelles configurations

لووو لووو لووو

Introduction

Production simple

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

Résumé

$$\begin{split} \left. d \, \mathcal{N}_{AA}^{\text{hard}} \right|_{\mathcal{C}} &= \mathcal{L}_{\text{int}} \left\langle N_{\text{coll}} \right\rangle \Big|_{\mathcal{C}} \times \frac{\sigma_{AA}^{\text{geo}}}{\sigma_{\text{NN}}} \times \sigma_{\text{NN}}^{\text{hard}} \times \mathcal{C} \\ \end{split}{20\%} \text{As collisions Au-Au} \ \mathcal{C} &\leq 20\% \text{ a} \ \sqrt{s} = 200 \text{ GeV} \\ \left. \left\langle N_{\text{coll}} \right\rangle \right|_{\mathcal{C}} &= 1558 \quad \sigma_{\text{AuAu}}^{\text{geo}} = 6900 \text{ mb} \quad \sigma_{\text{NN}} = 42 \text{ mb} \\ \vspace{-2.5mm} \text{Luminosité RHIC (1-mois)} \\ \left. \mathcal{L}_{\text{int}} &= 7.10^{32} \text{ cm}^{-2} \end{split}$$

Introduction

Production simple

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

```
Résumé
```

Perspectives

$\left. d \mathcal{N}_{\scriptscriptstyle AA}^{ m hard} \right _{\scriptscriptstyle \mathcal{C}} = \mathcal{L}_{\scriptscriptstyle m int} \left. \left\langle N_{ m coll} \right\rangle \right _{\scriptscriptstyle \mathcal{C}} \ \times \ rac{\sigma_{\scriptscriptstyle AA}^{ m geo}}{\sigma_{_{\scriptscriptstyle NN}}} \ \times \sigma_{_{\scriptscriptstyle NN}}^{ m hard} \ imes \ \mathcal{C}$
Pour des collisions Au-Au $\mathcal{C} \leq 20\%$ à $\sqrt{s} = 200~{\rm GeV}$
$\langle N_{\rm coll} \rangle \big _{\mathcal{C}} = 1558 \sigma_{\rm AuAu}^{\rm geo} = 6900 \mathrm{mb} \sigma_{_{NN}} = 42 \mathrm{mb}$
Luminosité RHIC (1-mois)
$\mathcal{L}_{_{ m int}} = 7.10^{32}{ m cm}^{-2}$
$\gamma - \pi^0$
$d\sigma/dp_{\perp\gamma} \sim 1 - 10^2 \text{ pb/GeV} \rightarrow d\mathcal{N}/dp_{\perp\gamma} \sim 40 - 4.10^3$ $d\sigma/dz \sim 10 - 10^3 \text{ pb} \rightarrow d\mathcal{N}/dz \sim 400 - 4.10^4$
$40/4x_{34} + 10$ 10 pb $74x_{34} + 100$ 4.10

 $/ \,\mathrm{GeV}$

Introduction

Production simple

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

```
Résumé
```

$$d\mathcal{N}_{AA}^{\text{hard}}\big|_{c} = \mathcal{L}_{\text{int}} \langle N_{\text{coll}} \rangle \big|_{c} \times \frac{\sigma_{AA}^{\text{geo}}}{\sigma_{\text{NN}}} \times \sigma_{\text{NN}}^{\text{hard}} \times \mathcal{C}$$
Pour des collisions Pb-Pb $\mathcal{C} \leq 20\%$ à $\sqrt{s} = 5.5$ TeV
$$\langle N_{\text{coll}} \rangle \big|_{c} = 2690 \quad \sigma_{\text{PbPb}}^{\text{geo}} = 7745 \,\text{mb} \quad \sigma_{NN} = 72 \,\text{mb}$$
Luminosité LHC (1-mois)

$$\mathcal{L}_{\rm int} = 5.10^{32} \, {\rm cm}^{-2}$$

Introduction

Production simple

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

```
Résumé
```

$\left. d \mathcal{N}_{_{AA}}^{\mathrm{hard}} \right _{_{\mathcal{C}}} = \mathcal{L}_{_{\mathrm{int}}} \left\langle N_{\mathrm{coll}} \right\rangle \Big _{_{\mathcal{C}}} \times \left. \frac{\sigma_{_{\mathrm{AA}}}^{\mathrm{geo}}}{\sigma_{_{\mathrm{NN}}}} \times \sigma_{_{\mathrm{NN}}}^{\mathrm{hard}} \times \mathcal{C}$
Pour des collisions Pb-Pb $\mathcal{C} \leq 20\%$ à $\sqrt{s} = 5.5~\mathrm{TeV}$
$\langle N_{\rm coll} \rangle \big _{c} = 2690 \sigma_{\rm PbPb}^{\rm geo} = 7745 \mathrm{mb} \sigma_{_{NN}} = 72 \mathrm{mb}$
Luminosité LHC (1-mois)
$\mathcal{L}_{\rm int} = 5.10^{32}{\rm cm}^{-2}$
$\underline{\gamma - \pi^0}$
$\frac{\mathrm{d}\sigma/\mathrm{d}p_{\perp\gamma}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 1 - 10^2 \text{ pb/GeV} \rightarrow \ \frac{\mathrm{d}\mathcal{N}/\mathrm{d}p_{\perp\gamma}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 30 - 3.10^3/\mathrm{GeV}$ $\rightarrow \ \frac{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 10^2 - 10^4 \text{ pb} \rightarrow \ \frac{\mathrm{d}\mathcal{N}/\mathrm{d}z_{\gamma\pi}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 10^3 - 10^5$

Introduction

Production simple

Corrélations

Résultats

• RHIC

• LHC

• Corrections d'ordre supérieur

• Taux de comptage

```
Résumé
```

$\left. d \mathcal{N}_{_{AA}}^{\mathrm{hard}} \right _{_{\mathcal{C}}} = \mathcal{L}_{_{\mathrm{int}}} \left\langle N_{\mathrm{coll}} \right\rangle \Big _{_{\mathcal{C}}} \times \frac{\sigma_{_{\mathrm{AA}}}^{\mathrm{geo}}}{\sigma_{_{\mathrm{NN}}}} \times \sigma_{_{\mathrm{NN}}}^{\mathrm{hard}} \times \mathcal{C}$
Pour des collisions Pb-Pb $\mathcal{C} \leq 20\%$ à $\sqrt{s} = 5.5~{\rm TeV}$
$\langle N_{\rm coll} \rangle \big _{c} = 2690 \sigma_{\rm PbPb}^{\rm geo} = 7745 \mathrm{mb} \sigma_{_{NN}} = 72 \mathrm{mb}$
Luminosité LHC (1-mois)
$\mathcal{L}_{_{ m int}} = 5.10^{32}{ m cm}^{-2}$
$\underline{\gamma - \gamma}$
$\frac{\mathrm{d}\sigma/\mathrm{d}p_{\perp\gamma}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 10^{-2} - 1 \text{ pb/GeV} \rightarrow \ \frac{\mathrm{d}\mathcal{N}/\mathrm{d}p_{\perp\gamma}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 0.3 - 30/\mathrm{GeV}$ $\rightarrow \ \frac{\mathrm{d}\mathcal{N}/\mathrm{d}z_{\gamma\pi}}{\mathrm{d}\sigma/\mathrm{d}z_{\gamma\pi}} \sim 30 - 3.10^3$

Conclusions

Production simple
Corrélations
Résultats

Résumé

Conclusions

Perspectives

Production simple inclusive

- mise en évidence d'un milieu dense
- importante phénoménologie
- limites
- **Corrélations** $\gamma \pi^0$
 - subtil équilibre !
 - sonde efficacement le processus de fragmentation
 - phénoménologie à RHIC et LHC

... et de comparer le coefficient de transport