Quarkonia (and heavy flavors) at RHIC

PHENIX

Andry Rakotozafindrabe LLR – École Polytechnique

QGP – France, Étretat 2006

Physics motivation – the starting point

- What are the properties of the hot and dense matter produced in relativistic heavy ion collisions ?
- c and b are produced in the initial parton collisions, so they can be used to probe the created medium :
 - open charm (or beauty) energy loss \rightarrow energy density
 - Only a few words here (from a newbie ③)
 - $c\bar{c}$, $b\bar{b}$ (quarkonia) suppressed by color screening \rightarrow deconfinement
 - We will focus on quarkonia in this talk, especially on hidden charm.

Heavy quarks

Heavy quarks dynamic

Measuring non-photonic electrons at RHIC:
R_{AA}
v₂

Heavy quark (radiative?) energy loss

(1-3) N. Armesto et al., PRD 71, 054027 (charm contribution only)

(4) M. Djordjevic et al., PRL 94, 112301 (beauty included)

Dunlop, J. Bielcik; QM05

- Agreement between both experiments \bigcirc
- Significant reduction at high pT suggests sizeable heavy quark energy loss. \mathbf{O}
- Data favors a strong transport coefficient* q hat ~14 GeV²/fm (radiative \mathbf{O} energy loss only model) \Leftrightarrow large initial gluon density ~ 3500! Too high! Should take into account the collisionnal energy loss? (see M. Djordjevic, nucl-th/0603066)

*q hat \propto density of scattering centers in the medium

05/07/2006

Andry Rakotozafindrabe – LLR

Charm flow

S.Butsyk QM05

Greco, Ko, Rapp, PLB 595 (2004) 202

M. Djordjevic et al., Phys.Lett.B632 (2006) 81

c and b quark p_T distributions at midrapidity before fragmentation : b contribution is dominant at high pT

Significant flow observed for heavy flavor electrons
 Indication for reduction of v₂ at p_T > 2 GeV/c. Due to beauty contribution?

Quarkonia

Mostly J/ Ψ (mostly PHENIX results)

Screening the J/Ψ in a QGP

• Production

- ~ 60% direct production J/ Ψ
- ~ $\sim 30\%$ via $\chi_c \rightarrow J/\Psi + x$
- $\sim 10\%$ via $\Psi' \rightarrow J/\Psi + x$

• Temperature of dissociation T_d

- for χ_c and Ψ ': $T_d \sim 1.1 T_c$
- for J/Ψ : $T_d \sim 1.5$ to 2 T_c

• Energy density ($\tau_0 = 1$ fm) vs the max. \sqrt{s} for SPS, RHIC and LHC

⇒ Sequential dissociation as the temperature (or energy density) increases : Satz her nh/

05/07/2006

Physics motivation – a few complications

 $h_{
m A}$

 $h_{
m B}$

• quarkonia production

• *g*+*g* fusion dominant at RHIC energies

• Sensitive to:

- Initial state
 - Modification of the parton distribution functions (shadowing, CGC)
 - p_T broadening (Cronin effect)
 - Parton energy loss in the initial state ?

Final state

- "Normal" nuclear absorption
- Absorption by (hadronic ?) comovers ?

Q = c or b

0

J/Ψ

or

Υ

• Color screening ?

CITUD

- In-medium formation (recombination) ?
- Flow ?
- + feed-down b, Ψ , $\chi_c \rightarrow J/\Psi + x$

Production baseline : $p+p \rightarrow J/\Psi$

 $p+p\rightarrow J/\Psi$ measurement will be used as a reference for $A+B\rightarrow J/\Psi$:

$$R_{AB} = \frac{yield_{AB}}{\langle N_{Coll} \rangle yield_{pp}}$$

05/07/2006

Andry Rakotozafindrabe - LLR

Cold nuclear effects : $d+Au\rightarrow J/\Psi$

Nucl. Phys. A696 (2001) 729-746

- Available d+Au data :
 - Weak shadowing (modification of gluon distribution) and weak nuclear absorption (σ_{abs} ~ 1mb favored)

RHIC : beyond cold nuclear effects ?

- Au+Au data : even compared to the « worst » σ_{abs} ~ 3mb case
 - Factor 2 of suppression beyond cold effects in the most central Au+Au bin

Cold nuclear matter predictions from Vogt, nuclth/0507027 (shadowing + $\sigma_{abs} = 1$, 3mb)

RHIC vs SPS (I) : raw comparison

- O SPS :
 - $\sqrt{s} \sim 17$ GeV i.e. a factor 10 below RHIC
 - Cold effect = normal nuclear absorption $\sigma_{abs} = 4.18 \pm 0.35$ mb
 - Maximum $\varepsilon \sim 3 \text{ GeV/fm}^3(\tau_0 = 1)$
- Compare to RHIC :
 - Cold effect = shadowing + nuclear absorption $\sigma_{abs} \sim 1mb$ (Vogt, nuclth/0507027)
 - Maximum $\varepsilon \sim 5 \text{ GeV/fm}^3$ ($\tau_0 = 1$), higher than at SPS, but still, the same pattern of J/ Ψ suppression !

SPS normalized to NA51 p+p value (NA60 preliminary points from Arnaldi, QM05).

RHIC vs SPS (II) : extrapolating suppression models

- Suppression models in agreement with NA50 data overestimate the suppression when extrapolated at RHIC energies :
 - quite striking for mid and most central Au+Au bins
 - already the case for Cu+Cu most central bins?

Grandchamp et al. hep-ph/0306077

Au+Au direct

Cu+Cu

Some recombination effects ?

• Adding some regeneration that partially compensates the suppression : there is a better agreement between the model and the data.

[₩]1.2

Grandchamp et al. hep-ph/0306077

Cu+Cu direct

Au+Au direct Au+Au regen Au+Au total

Recombination predictions for $< p_T^2 > vs N_{coll}$

- \circ Recombination predicts a narrower p_T distribution with an increasing centrality, thus leading to a lower $< p_T^2 >$
- Within the large error bars :
 - $< p_T^2 >$ seems to be consistent with a flat dependence
 - data falls between the two hypothesis \Rightarrow partial recombination ?

Predictions for $< p_T^2 > vs N_{coll}$: Cronin effect?

• Random walk of the initial gluons in the transverse plane :

$$< p_T^2 >_{AA} = < p_T^2 >_{pp} + \rho_0 \sigma_{g-N} \Delta p_T^2 L_{AA}$$

- Use this linear L dependence to fit the p_T^2 brodening seen in dimuon data from p+p to d+Au at RHIC $p_T^2 = 2.51+0.32*L$
- Using $L \leftrightarrow N_{coll}$, plot the result vs N_{coll}

< p_{1}^{2} s_{nn} = 200 GeV s_{nn} = 38.8 GeV 6 s_{NN} = 29.1 GeV s_{NN} = 27.4 GeV s_{NN} = 19.4 GeV 5 s_{NN} = 17.3 GeV RHIC (v~1.7) 3 ¥_____ \odot ò 0 2 6 8 10 L (fm) VN Tram, Moriond 2006 & PhD thesis

Recombination predictions vs rapidity

Thews & Mangano, PRC73 (2006) 014904c

- \circ Recombination predicts a narrower rapidity distribution with an increasing N_{part}.
- Going from Cu+Cu to the most central Au+Au : no significant change seen in the shape of the rapidity distribution.

Blue bands: cold nuclear matter prediction from Vogt, nucl-th/0507027 (shadowing + $\sigma_{abs} = 0$, 3mb)

Karsch, Kharzeev & Satz, PLB 637 (2006) 75 Ending where it began:

revisiting the sequential dissociation

- Data driven parametrization of cold nuclear effect (expected)
- Sequential melting \Rightarrow overall J/ Ψ survival probability (measured/expected):

 $S = 0.6 S_{direct J/\Psi} + 0.4 S_{J/\Psi \leftarrow \Psi', \chi c}$

- Excited states melting from ψ' suppression pattern @ SPS
- Recent lattice QCD results : direct J/ Ψ melting at 10-30 GeV/fm³

Real Au+Au systematic errors i.e. pt-to-pt and global scale added (small systematic errors associated with NA50 published data)

• SPS and RHIC data seems to be consistent with the sequential melting.

Summary (I)

PHENIX preliminary results on $J/\Psi \rightarrow$ dileptons at forward and mid-rapidity in Cu+Cu and Au+Au :

• Suppression pattern

- Beyond cold nuclear effects, at least factor 2 of suppression in most central Au+Au events
- Similar to SPS suppression? despite a higher energy density reached
- Overestimated by models in agreement with NA50 data and extrapolated at RHIC energy
- Understandable as $c \overline{c}$ recombinations that partially compensate the J/ Ψ suppression ?
 - Still open question (test vs <p_T²> dependance and rapidity distribution)

Summary (II)

- Alternate explanations ?
 - Direct J/ Ψ is not melting at present energy densities ? Only the higher mass resonances Ψ ' and χ_c ? (recent lattice QCD results)
 - J/ Ψ transport (with high p_T J/ Ψ escaping QGP region) + QGP suppression ? (Zhu, Zhuang, Xu, PLB607 (2005) 107)
- Need to improve knowledge on cold nuclear effects at RHIC

Hint of things to come

- Improved reference p+p :
 - x10 higher statistics from run 5
 - x30 higher statistics from run 6
- Future measurements in Ψ ?
- \circ Future measurements in χ_c
- Planning d+Au (28 nb⁻¹ vs 2.7 nb⁻¹ in run 3) and Au+Au (1 nb⁻¹ vs 0.24 nb⁻¹ in run 4) with high luminosity

A. Bickley, Hard Probes 06

First upsilon measurement

Hie Wei, QM05

1st Upsilons at RHIC from ~3pb⁻¹ collected during the 2005 run.

05/07/2006

Andry Rakotozafindrabe - LLR

STAR results and near future

M. Cosentino, QWG06

24

• Dataset Au+Au@200 GeV :

- No trigger due to high background
- Just a faint signal
- For efficient J/ψ trigger, full barrel ToF is needed (just patch in Run5)
- p+p@200GeV (Run5):
 - trigger commissioning (~1.7M events)
- Run 6 (this year): expect 500-1000 (work in progress)

05/07/2006

Back-up

05/07/2006

Andry Rakotozafindrabe – LLR

- i) Casimir factor
- light hadrons originate predominantly from gluon jets, heavy flavoured hadrons originate from heavy quark jets
 C_R is 4/3 for quarks, 3 for gluons
 ii) dead-cone effect
 - gluon radiation expected to be suppressed for $\theta < M_Q/E_Q$ [Dokshitzer & Karzeev, Phys. Lett. **B519** (2001) 199] [Armesto et al., Phys. Rev. D69 (2004) 114003]

Charm flow

 \bigcirc Disagreement between STAR and PHENIX v_2

Alternate model : Hydro + J/ Ψ transport

- One detailed QGP hydro + J/ψ transport (Zhu et al)
- $\circ g + J/\psi \rightarrow c + c$
- First published without cold nuclear effects, but here :
- + Nuclear absorption (1 or 3 mb)
- + Cronin effect from dAu $< p_2^T > ok$ (as on previous slide)
- Model should be valid for y=0
 - But match y=1.7
 - (and central y=0)

Zhu, Zhuang, Xu, PLB607 (2005) 107 + private communication

Recombination predictions vs rapidity

- Recombination (Thews et al., nucl-th/0505055) predicts a narrower rapidity distribution with an increasing N_{part}.
- Going from p+p to the most central Au+Au : no significant change seen in the shape of the rapidity distribution.

J/ Ψ production in d+Au vs centrality

High x₂ ~ 0.09

- Small centrality dependence
- Model with absorption + shadowing (black lines*):
 - shadowing EKS98
 - $\sigma_{abs} = 0$ to 3 mb
- $\sigma_{abs} = 1$ mb good agreement • $\sigma_{abs} = 3$ mb is an upper limit
- ⇒ weak shadowing and weak nuclear absorption

Low x₂ ~ 0.003

*Colored lines: FGS shadowing for 3 mb

05/07/2006

Andry Rakotozafindrabe - LLR

RHIC vs SPS

- Plotted « à la SPS » way i.e. normalize the J/Ψ production with the cold nuclear effects :
 - nuclear absorption with $\sigma_{abs} = 4.18 \pm 0.35$ mb at SPS
 - Shadowing + nuclear absorption with $\sigma_{abs} \sim 1 \text{ mb}$ at RHIC (Vogt, nuclth/0507027)

(NA60 preliminary points from Arnaldi, QM05).

SPS vs RHIC

• expected = normal nuclear absorption

 $\sigma = 4.18 \pm 0.35 \text{ mb}$

• NA50:
$$|y^*| = [0,1]$$

• RHIC :

• $\sqrt{s} = 200 \text{ GeV}$

- R_{AA} i.e. $(J/\Psi \text{ in } A+A) / (\text{Ncoll } * J/\Psi \text{ in } p+p)$
- « expected » = nuclear absorption ($\sigma \sim 1$ à 3 mb) + shadowing
- $|\mathbf{y}| = [0, 0.35] \text{ or } [1.2, 2.2]$

05/07/2006

Andry Rakotozafindrabe – LLR

PHENIX detector

 $J/\Psi \rightarrow e^+e^-$ |y| < 0.35 $P_e > 0.2 \text{ GeV/c}$ $\Delta \Phi = \pi$

Tracking, momentum measurement with drift chambers, pixel pad chambers
e ID with EmCAL + RICH

 $J/\Psi \rightarrow \mu^{+}\mu^{-}$ 1.2< |y| < 2.2 $P_{\mu} > 2 \text{ GeV/c}$ $\Delta \Phi = 2\pi$ • Tracking, moment

• Tracking, momentum measurement with cathode strip chambers

• μ ID with penetration depth / momentum match

05/07/2006

Centrality measurement, vertex position Beam-beam counters (charged particle production) Zero-degree calorimeters (spectator neutrons)

Invariant yield vs p_T at forward rapidities

Cu+Cu (|y|∈[1.2,2.2])

Au+Au (|y|∈[1.2,2.2])

 \bigcirc we fit the p_T spectrum using $A[1+(p_t/B)^2]^{-6}$ to extract $< p_T^2 >$

Andry Rakotozafindrabe – LLR

Invariant yield vs p_T at mid-rapidity

Cu+Cu (|y|~0.35)

Au+Au (|y|~0.35)

• we fit the p_T spectrum using $A[1+(p_t/B)^2]^{-6}$ to extract $< p_T^2 >$

Andry Rakotozafindrabe – LLR

Computing the J/ Ψ yield

Invariant yield :

- *i* : *i*-th bin (centrality for e.g.)
- $N_{J/\psi}^{i}$: number of J/ψ 's reconstructed
- $A\varepsilon_{J/\psi}^{i}$: probability for a J/ψ thrown and embedded into real data to be found

(considering reconstruction and trigger efficiency)

- N_{MB}^{i} : total number of events
- $\varepsilon_{BBC}^{J/\psi}$: BBC trigger efficiency for events with a J/ψ
- \mathcal{E}_{RBC}^{MB} : BBC trigger efficiency for minimum bias events

For Au+Au or Cu+Cu collision : $\varepsilon_{BBC}^{MB} \sim \varepsilon_{BBC}^{J/\psi}$

Signal extraction in Cu+Cu

$$B_{\mu\mu} \frac{dN_i}{dy} (CuCu \rightarrow J/\psi \rightarrow \mu + \mu^-) = \underbrace{N_{J/\Psi}^i / N_{MB}^i}_{\Delta y. A \mathcal{E}_{J/\psi}^i}$$

O Cuts :
O Cuts :
O Cuts :
Dimuons cuts
O Cuts :
O Combinatoric background from
uncorrelated dimuons :
N = 20/(NI⁺⁺ N⁻⁻)

- Signal = number of counts within the J/Ψ invariant mass region • $(2.6 - 3.6 \text{ GeV}/c^2)$ after subtracting N_{bgd} to the distribution of the opposite sign dimuons.
- Systematic errors : $\sim 10\%$ from varying fits of the background subtracted signal. Also account for the physical background that can be included into the previous counting.

bgd

Getting acc*eff correction factors in Cu+Cu

$$B_{\mu\mu}\frac{dN_{i}}{dy}(CuCu \rightarrow J/\psi \rightarrow \mu^{+}\mu^{-}) = \frac{N_{J/\psi}^{i}/N_{MB}^{i}}{\Delta y A\varepsilon_{J/\psi}^{i}}$$

- Using Monte Carlo J/ Ψ generated by PYTHIA over 4π
- embed the J/ Ψ within muon arm acceptance into real minimum bias Cu+Cu data
- Apply to them the same triggers and signal extraction method as the ones applied to the data
- \Rightarrow Acc.eff(*i*) is the probability that a J/ Ψ thrown by PYTHIA in a given bin *i* to survive the whole process followed by the data

Systematic errors :

• 5% from track/pair cuts and uncertainities in p_T , y and z-vertex input distribution

• 8% from run to run variation (mainly due to the varying number of dead channels in MuTr).

Collision geometry and centrality (eg : Cu+Cu)

Run 1 to Run 5 capsule history and J/Ψ in PHENIX

PRL92 (2004) 051802
 PRC69 (2004) 014901
 PRL96 (2006) 012304
 QM05, <u>nucl-ex/0510051</u>

Year	Ions	$\sqrt{s_{_{NN}}}$	Luminosity	Status	J/Ψ (ee + μμ)
2000	Au-Au	130 GeV	1 μb ⁻¹	Central (electrons)	0
2001	Au-Au	200 GeV	24 μb ⁻¹	Central	13 + 0 [1]
2002	р-р	200 GeV	0.15 pb ⁻¹	+1 muon arm	46 + 66 [2]
2002	d-Au	200 GeV	2.74 nb ⁻¹	Central	<u> 360 + 1660 [3]</u>
2003	р-р	200 GeV	0.35 pb ⁻¹	+ 2 muon arms	130 + 450 [3]
	Au-Au	200 GeV	240 μb ⁻¹	preliminary	~ 1000 + 5000 [4]
2004	Au-Au	63 GeV	9.1 μb ⁻¹	analysis	~ 13
	р-р	200 GeV	324 nb ⁻¹		
	Cu-Cu	200 GeV	4.8 nb ⁻¹	preliminary	~ 1000 + 10000 [4]
2005	Cu-Cu	63 GeV	190 mb ⁻¹	analysis	$\sim 10 + 200$
	р-р	200 GeV	3.8 pb ⁻¹		~ 1500 + 10000
2006	р-р	200 GeV	~10 pb ₋₁	Just done	~3000 + 30000

Cu+Cu 200 GeV data taking: triggers and level2 filtering

J/Ψ as a probe of the produced medium (I)

- Hard probe
 - Large charme quark mass $(m_{J/\Psi} \sim 3.1 \text{ GeV/c}^2) \Rightarrow J/\Psi$ produced at early stages of the collision
 - Size $r_{J/\Psi} \sim 0.2$ fm < typical hadronique size (~1 fm)
 - Recent lattice QCD result : melting temperature in a deconfined medium is T \sim 1.5 à 2 $T_{\rm C}$

• ~60% direct production J/Ψ ~30% via $\chi_c \rightarrow J/\Psi + x$ ~10% via $\Psi' \rightarrow J/\Psi + x$

p+p ⇒ reference for p+A or A+A
 ratios (p+A)/(p+p) or (A+A)/(p+p)

Suppression or enhancement of the J/Ψ yield : Due to nuclear matter or to deconfined medium ?

J/Ψ as a probe of the produced medium (II)

- Initial state effect
 - CGC, shadowing

• Cronin effect : multiple elastic scattering $\Rightarrow p_T$ broadening

• Final state effect

• Nuclear (hadronic) absorption

- suppression : « colour screening »
- or enhancement : recombinaison

• From 10 to 20 cc in central Au+Au at RHIC

• Evaluated via p+A ou d+A

Andry Rakotozafindrabe – LLR

Background sources

• <u>Physical</u> background: correleted dimuons

• Drell-Yan:

>wiw<

• Open charm: D, $\overline{D} \rightarrow \mu^{\pm} + \dots$

O Combinatoric background: uncorrelated dimuons

• $\pi^{\pm}, K^{\pm} \rightarrow \mu^{\pm} + \dots$ (decay before the absorber)

05/07/2006

Andry Rakotozafindrabe - LLR

Energy density

Longitudinally expanding plasma : \mathbf{O}

$$\varepsilon_{Bj} = \frac{dE_T}{dy} \frac{1}{\tau_0 \pi R^2}$$

- $dE_T/d\eta$ measurement at mid-rapidity by PHENIX EMCal \bigcirc
- Which τ_0 ? \bigcirc

45

Commonly used variables

- Transverse : perpendicular to the beam direction
- Transverse momentum : $p_T = sqrt(p_x^2 + p_y^2)$
- Rapidity : $y = 1/2 \ln (E+p_z)/(E-p_z)$
- Pseudorapidity : $\eta = 1/2 \ln (p+p_z)/(p-p_z)$
- Invariant mass of a pair : $M_{inv}^2 = (E_1 + E_2)^2 (p_1 + p_2)^2$