Di-μ @ RHIC (= J/ψ @ PHENIX)

> Catherine Silvestre

Di- μ @ RHIC (= J/ ψ @ PHENIX) Reconstruction et Mesure

Catherine Silvestre

CEA Saclay

5 Juillet 2006

イロト 不得 トイヨト イヨト 二日

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure

Taux de production du J/ ψ Extraction du signal Correction acc \times ef Systématiques

Conclusion

1 Motivations

- 2 Reconstruction
 - Muon tracker
 - Déclenchement
 - Reconstruction
 - Bruit
 - Alignement

- **Taux de production du** J/ψ
- Extraction du signal
- Correction acc×eff
- Systématiques

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alianement

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times ef Systématiques

Conclusion

Motivations

- Reconstruction
 - Muon tracker
 - Déclenchement
 - Reconstruction
 - Bruit
 - Alignement

- **Taux** de production du J/ψ
- Extraction du signal
- Correction acc×eff
- Systématiques
- 4 Conclusion

Motivations

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

- Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alignement
- Mesure Taux de production du J / ψ Extraction du signal Correction acc × eff Systématiques

Conclusion

Pourquoi des J/ ψ ?

- J/ψ : sonde du milieu formé dans la collision.
- Suppression du J/ ψ vs E_t observée au SPS par Na50 et Na60.
- Mécanismes proposés:
 - absorption nucléaire normale et shadowing;
 - absorption nucléaire anormale due au PQG;
 - interaction comovers
 - recombinaison des paires c, \bar{c} .
- \Rightarrow Mesure à haute énergie.

Comment ?

- Références: pp, dAu.
- Ions lourds: CuCu, AuAu.

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

Reconstruction

Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times ef Systématiques

Conclusion

1 Motivations

2 Reconstruction

- Muon tracker
- Déclenchement
- Reconstruction
- Bruit
- Alignement

- **Taux** de production du J/ψ
- Extraction du signal
- Correction acc×eff
- Systématiques

Le spectromètre de PHENIX (1/3)

Mesure des muons:

Conclusion

Absorbeur frontal: réduction des hadrons dans les bras muons.

MuID: identification des muons via la profondeur de pénétration et à l'aide de tubes larocci + absorbeurs.

MuTr: mesure de l'impulsion grâce à des chambres à cathodes strippées.

BBC: mesure luminosité, vertex, centralité.

Le spectromètre de PHENIX (2/3)

Le spectromètre de PHENIX (3/3)

Conclusior

MulD:

 5 rangées de détecteurs actifs entremêlés avec de l'absorbeur.

イロト イポト イヨト イヨト

- 2 orientations des fils pour chaque plan de détection.
- 6 panneaux par plans.

Systèmes de déclenchement

Di-μ @ RHIC (= J/ψ @ PHENIX)

> Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction

Alignemer

Mesure Taux de production du J / ψ Extraction du signa Correction acc \times e Systématiques

Conclusion

Trigger minimum bias: BBC.

Trigger de niveau 1 (L1):

MuID, déclenchement sur des évènements possédant 2 muons.

Trigger de niveau 2 (L2): Reconst. rapide des trajectoires.

- L2MUI: MuID seul
- L2MUT: MuID + MuTr

Reconstruction

Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alianement

Mesure Taux de production du J / ψ Extraction du signal Correction acc X ef Systématiques

- Reconstruction depuis le MuID jusqu'à la première station.
- Utilisation de fenêtres dynamiques pour réduire la combinatoire.
- Fit Kalman \Rightarrow impulsion μ
- Fit vertex (2 traces + BBC) ⇒ masse invariante des di-µ[¯] → ^Q →

Réjection du bruit

Bruit

1400

1200

1000

Réjection des traces fantômes:

Nettoyage des traces ayant des strips en commun $\Rightarrow \chi^2$ rapide (avant l'ajustement complet des traces)

Avant Après coupures 400 Mass. GeV/c Mass. GeV/c

Coupures

- Correspondance plus stricte entre le MuID et le MuTr.
- Sélection des traces les plus profondes.
- Correspondance entre p_{τ} et la profondeur des traces.
- Coupure sur le χ^2 (traces et vertex) イロト 不得 トイヨト イヨト 二日

Alignement (1/2)

Di-µ @ RHIC	Méthode itérative jusqu'au run 5	Alignement global
(= J/ 4 @ PHENIX) Catherine Silvestre Motivations Reconstruction Muon tracker Déclanchement Reconstruction Brut Algnement Mesure Taux de production du J / 4 Extraction du signal Correction acc × eff Systématiques	 Des détecteurs de référence supposés alignés par rapport auxquels les autres sont alignés. Repositionnement de la distribution moyenne des résidus. Alignement laborieux, à la main, itératif ⇒ long. Convergence non assurée: résultats biaisés car différents si changement de détecteurs de référence. 	 Tous les détecteurs sont utilisés dans l'algorithme de reconstruction. Minimisation du ∑ χ²_{traces} sans itérations, donnant un résultat optimum. Remarque: un nombre limité de détecteurs de références sont fixés de façon arbitraire pour empêcher les transformations globales du spectromètre (ex: rotation d'ensemble).
	1	

Alignement global (2/2)

erine estre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure Taux de production du J / ψ Extraction du signal Correction acc \times eff Systématiques

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times eff Systématiques

Conclusion

1 Motivations

- Reconstruction
 - Muon tracker
 - Déclenchement
 - Reconstruction
 - Bruit
 - Alignement

3 Mesure

- **Taux** de production du J/ψ
- Extraction du signal
- Correction acc×eff
- Systématiques

Production de J/Psi par unité de rapidité et par collision inélastique

Catherine Silvestre

Motivations

Reconstructio Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times eff Systématiques

Conclusion

avec

- B rapport de branchement pour le canal de désintégration détecté
- y la rapidité du J/ ψ (mesurée)
- $N_{J/\psi}$ le nombre de J/ψ (mesuré)
- A_{\varepsilon J/\psilon}} corrections d'efficacit\u00e9 et d'acceptance du d\u00e9tecteur (simul\u00e9s)
- $\epsilon_{\rm BBC}^{J/\psi}$ efficacité du trigger (ici BBC) sur des événements contenant un J/ ψ (simulée)
- N_{BBC} nombre d'événements (mesuré)
- $\varepsilon_{\rm BBC}^{\rm MB}$ efficacité du trigger pour tous les événements (simulée) 250×15^{-10}

$N_{\mathrm{J/\psi}}$: extraction du signal

Soustraction du bruit de fond

- soit par la méthode des like-sign;
- soit en utilisant l'Event Mixing.

Ajustements:

- du bruit de fond : compte signal au dessus de l'exponentielle;
- 1 gaussienne: la valeur moyenne fixe, amplitude et largeur en paramètres;
- 2 gaussiennes: valeurs moyennes et largeurs fixes, seule l'amplitude (totale) est un paramètre.

Calcul des corrections acc×eff

Di- μ @ RHIC (= J/ ψ @ PHENIX)

> Catherine Silvestre

Motivations

Reconstructio Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure Taux de production du J / ψ Extraction du signal Correction acc × eff Systématiques

Conclusion

 Simulation réalisée en mélangeant des J/ψ simulés dans des évts réels (embedding) + réponse (inefficacités, zones mortes, gain)

 Même reconstruction qu'avec les données réelles (L1+L2+offline+coupures)

$$\Rightarrow A\varepsilon_i = N_{jpsi}^{reco}/N_{jpsi}^{MC}|_i$$

- Par définition, l'acceptance (~ 10 %) est plate en fonction de la centralité.
- L'efficacité diminue avec la centralité à cause de l'occupation dans les détecteurs.
- L'effet est plus marqué dans le bras nord, car à même centralité, la multiplicité est plus grande

Systématiques

Di-μ @ RHIC (= J/ψ @ PHENIX)

> Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times el Systématiques

source	valeur
Extraction du signal	de 5 à 20 %
MC statistique	négligeable
acc×eff, dépendance avec dis-	1.0/
tribution d'input (Pythia)	4 %
Variations run à run	3+2 %
Efficacité MuID	4 %
Efficacité MuTr	0.01
et paquets chauds	2 %
Acceptance	5 %
Correspondance entre MC et	de 0 à 16 %
données réelles	(asymétrique)

Di-μ @ RHIC (= J/ψ @ PHENIX)

Catherine Silvestre

Motivations

Reconstruction Muon tracker Déclenchement Reconstruction Bruit Alignement

Mesure

Taux de production du J / ψ Extraction du signal Correction acc \times ef Systématiques

Conclusion

1 Motivations

- Reconstructio
 - Muon tracker
 - Déclenchement
 - Reconstruction
 - Bruit
 - Alignement

- Taux de production du J/ ψ
- Extraction du signal
- Correction acc×eff
- Systématiques

