

OUTLINE

- Introduction
- Mesure du Upsilon pour sonder le QGP
- Spectromètre à muons d'ALICE : description & performances

Faux de production des états Upsilon pour un mois de collisions Pb-Pb :

- « inputs » de simulation
- extraction des taux de production des états Upsilon vs. centralité
- scénario de suppression des Upsilon vs. p_T ou centralité
- Conclusion

Aux énergies du LHC, une grande statistique de Upsilon est attendue.

Dans un milieu nucléaire déconfiné (QGP), le phénomène <u>d'écrantage de couleur</u> entraîne une suppression des états Upsilon.

Une paire $b\overline{b}$ ne peut pas former un état Upsilon dans un « QGP de taille infinie » si $T_{QGP} > T_D$ (température de dissociation).

Une suppression séquentielle est attendue pour les états Upsilon :

<u>Dans un QGP de taille finie</u>, la suppression des états Upsilon dépend du p_T ou de la centralité de la collision. Les Upsilon de bas p_T ont un temps de formation plus petit que les upsilon de haut p_T \rightarrow <u>les upsilon de bas p_T ont donc une probabilité plus importante de se former dans le QGP et donc d'être supprimés.</u>

Reconstruction et identification des états Upsilon (Y, Y', Y") via leur canal de désintégration en dimuons.

Le spectromètre à muons d'ALICE a une acceptance géométrique : 2.5 < η < 4

Performances obtenues avec des simulations rapides avec un bruit de fond de niveau 1 = 2 événements HIJING avec $dN_{ch}/dy|_{v=0}$ = 6000

	Mass	Acceptance	Tracking	Trigger
	resolution	geometrical	efficiency	efficiency
Ŷ	115 MeV/c ²	4.79%	86%	92%

• Séparation possible des états Upsilon (Υ , Υ ', Υ ")

• Fréquence de déclenchement du trigger (Pb-Pb collisions – Min. bias) : Upsilon \approx 0.01 Hz / BdF \approx 65 Hz

•Principales sources de muons :

- <u>états Upsilon :</u> distributions en p_T sont extrapolées à partir des données de CDF distributions en y sont données par le modèle CEM
- <u>charme & beauté ouverte :</u> générés en utilisant Pythia ("tuning" QCD@NLO)
- π et K : générés à partir de paramétrisation issues de Hijing
- <u>Section efficace proton-proton à 5.5 TeV pour les états Upsilon (modèle CEM) & quark</u> <u>lourds (pQCD @ NLO) :</u>

(hep-ph/0311048)	cc	bb	Υ	Υ'	Υ"
σ _{pp} (μb)	6640	210	0.501	0.246	0.100
C _{sh} (b = 0)	0.65	0.84	0.76	0.76	0.76

- <u>Coupures utilisées pour l'analyse</u> : coupure haute en p_T du trigger & $p_T^{\mu} > 1$ GeV/c
- <u>Efficacité du détecteur :</u> réponses du détecteur (efficacités de « tracking & trigger » & acceptance & « smearing ») obtenues à partir de simulations rapides dans AliRoot.

 $N_{\mu\mu}^{Pb-Pb}(b) = f_{coll}(b) \cdot T_{Pb-Pb} \cdot \sigma_{pp} \cdot C_{sh}(b) \cdot Br_{\mu\mu} \cdot \alpha_{acc} \cdot \varepsilon \cdot T$

T^{Pb–Pb}

- recouvrement nucléaire pour les collisions Pb-Pb donnée par le modèle de Glauber
- f_{coll} : fréquence de collisions dans une classe en centralité [b₁, b₂]
- C_{sh} : facteur de "shadowing" nucléaire en Pb-Pb : $C_{sh}(b) = C_{sh}(0) + (1 C_{sh}(0)) \times (\frac{b}{16})^4$
- $Br_{\mu\mu}$: rapport de branchement en dimuons pour les quarkonia ou les paires de quarks lourds
- $T = 10^6$ s : temps d'acquisition effectif pour un mois de collisions Pb-Pb
- ε : efficacité du détecteur = efficacité "tracking" × efficacité "trigger"
- *α*_{acc} : facteur d'acceptance géométrique

Somme de 3 "Breit-Wigner modifiées" :

$$f(M_{\mu\mu}) \times \frac{{\Gamma_Y}^2}{{\Gamma_Y}^2/4 + (M_{\mu\mu} - M_Y)^2}$$

 f est une fonction polynomiale avec 3 paramètres libres pour prendre en compte les effets du détecteur liés au transport des muons

• la masse moyenne M_Y et la largeur de la Breit-Wigner Γ_Y sont extrait du fit.

• resolution en masse du upsilon :

 $\sigma_{\rm Y}$ = 2.35 * $\Gamma_{\rm Y}$ ~ 115 MeV/c²

fit gaussien ?

Cas des collisions centrales Pb-Pb (b < 3 fm)

<u>hypothèse</u>: soustraction parfaite du continuum dimuons non corrélés $\Rightarrow \sigma_{bin}^{cor} = \sqrt{2}$

une exponentielle est utilisée pour le fit du continuum corrélé (beauté + charme)

F. Guérín - QGP France - Etretat 2006

Taux de production vs. centralité

F. Guérín - QGP France - Etretat 2006

12

<u>modèle de suppression par « seuil »</u> \rightarrow J.F. Gunion & R. Vogt : arXiv : hep-ph/9610420

la suppression du Upsilon dans le QGP dépend principalement :

- pour les <u>états Upsilon</u> : temps de formation τ_F , température de dissociation t_D , p_T
- pour le <u>QGP</u> : température T_{QGP} , taille r_{QGP} et temps de vie τ_{QGP}

probabilité de survie du Upsilon S(p_T) est calculée en considérant 2 cas extrêmes :

- « quenched QCD » : $T_c = 270 \text{ MeV} \rightarrow W.M. \text{ Alberico, hep-ph/0507084}$
- « unquenched QCD » : T_c = 190 MeV \rightarrow C.Y. Wong, PRC 72 (2005) 034906

resonance	J/ψ	ψ'	χc	r	r'	r'	χ _b	χ,'
τ _f (fm/c)	0.89	1.5	2.0	0.76	1.9	1.9	2.6	2.6
$T_{\rm D}/T_{\rm c}$ quenched	1.7	1.1	1.13	4.0	1.4	1.14	1.6	1.16
T_D/T_c unquenched	1.21	1	1	2.9	1.06	1	1.07	1

PPR vol II – CERN/LHCC 2005-030

F. Guérín - QGP France - Etretat 2006

Y'/Y & Y/bb vs. centralité

S. Grigoryan – PPR vol II – CERN/LHCC 2005-030

- néglige l'absorption nucléaire pour le Upsilon
- normalisation pour la production des états Upsilon : beauté corrélée ($M_{\mu\mu}$ > 5 GeV) extrait à partir du spectre en masse dimuon corrélé (*R. Guernane - PPR vol II*)

• statistique correspond à 1 mois de collisions Pb-Pb

• La suppression du Upsilon est importante pour les collisions Pb-Pb les plus centrales avec le scénario de suppression 2_(« unquenched QCD » : T_c =190 MeV)

 la perte d'énergie des quarks lourds n'est pas prise en compte dans la normalisation

• avec la mesure du $\Upsilon'\!/\!\Upsilon$, les effets nucléaire s'annulent en première approximation

- quel que soit le cas considéré, la suppression est plus visible sur le rapport Υ'/Υ

Υ'/Υ vs. upsilon p_T

E. Dumonteil & P. Crochet – ALICE-INT-2005-002

scénario de suppression pour différent modèle de plasma :

- rayon du plasma : R = 1fm or R_{Pb}
- QCD « quenched » (SUN-QGP) or
 « unquenched » (3flavors-QGP)

La suppression attendue du Y' est plus importante que celle du Y dans la région des bas p_T

Cette suppression du rapport Υ'/Υ à bas p_T dépend de la taille, du temps de vie et de la température du QGP

Étude de l'extraction des états « Upsilon » à partir du spectre en masse dimuons :

• Taux de production des états Upsilon pour un mois de collisions Pb-Pb (minimum biais) :

 N_{Y} ≈ 7400 $N_{Y'}$ ≈ 2000 $N_{Y''}$ ≈ 1000

- séparation possible des états upsilon pour chacune des 5 classes en centralité
- statistique importante & faible erreur statistique (<10 %) pour le Υ dans les 5 classes en centralité

La mesure de la production des états Upsilon avec le spectromètre à muons d'ALICE en fonction du p_T et/ou de la centralité permet de distinguer différents scénarii de QGP