Premières journées QGP-France Étretat, 3-6 Juillet 2006

Spectres, flow (étranges) et application de l'hydrodynamique aux énergies du RHIC

- Hydrodynamique idéale
- Comparaison aux données de RHIC (STAR) : Au+Au 62 GeV et 200 GeV
 - Spectres
 - Flow elliptique
- Extensions par rapport à l'hydrodynamique idéale
- Sommaire

Jeff Speltz

Institut Pluridisciplinaire Hubert Curien, Strasbourg

- Quelles informations voulons/pouvons-nous obtenir sur le système?
 - Thermalisation locale, rapide ?
 - QGP ? (via l'équation d'état : EoS)
 - Les conditions de découplage du système ?
- Quelles sont les entrées nécessaires?
 - Conditions initiales :
 - L'instant à partir duquel l'hypothèse de thermalisation est valide (τ_0)
 - Évolution spatio-temporelle du système :
 - EoS: p = p(e,n)
 - Conditions finales :
 - L'instant à partir duquel l'hypothèse de thermalisation n'est plus valide (T_{dec})

Modèles hydrodynamiques

(2+1) Hydro (+ équilibre chimique partiel : $T_{ch} \approx 164 \text{ MeV}$) :

. . .

P.F. Kolb, J. Sollfrank and U.Heinz, Phys. Rev. C 62 (2000) 054909
P.F. Kolb and R. Rapp, Phys. Rev. C 67 (2003) 044903
P.F. Kolb and U.Heinz, nucl-th/0305084
P. Huovinen *et al.*, Phys. Lett. B 503 (2001) 58

- 3D Hydro (+ cascade) :
- C. Nonaka and S.A Bass, nucl-th/0510038
- D. Teaney et al., nucl-th/0110037
- T. Hirano and M. Gyulassy, nucl-th/0506049
- Résultats à 62 GeV :
 - Modèle de P. Kolb et U. Heinz adapté

http://nt3.phys.columbia.edu/OSCAR/models/list.html#AZHYDRO E. Frodermann and U. Heinz, private communication (2005) R. Rapp, private communication (2006)

- $\tau_0 (62 \text{ GeV}) = \tau_0 (200 \text{ GeV}) = 0.6 \text{ fm/c}$
- $s_0 (62 \text{ GeV}) = 80 \text{ fm}^{-3} < s_0 (200 \text{ GeV}) = 110 \text{ fm}^{-3}$
- $n_0 (62 \text{ GeV}) = 0.8 \text{ fm}^{-3} > n_0 (200 \text{ GeV}) = 0.44 \text{ fm}^{-3}$
- 62 GeV et 200 GeV : EoS avec transition de phase de 1^{er} ordre à $T_c = 165 \text{ MeV}$

Spectres centraux à 200 GeV : π^- , K⁻, \overline{p}

- Le meilleur accord entre données et hydro pour :
 - $T_{dec} = 100 \text{ MeV}$
 - $\alpha \neq 0$
- $\alpha \neq 0$: importance des conditions initiales

 α : vitesse transverse initiale (à τ_0) : $v_T(r)$ =tanh(αr)

Spectres centraux à 62 GeV : π^2 , K^2 , \overline{p}

Transverse Momentum p_T (GeV/c)

- Accord comparable (peut-être légèrement moins pour les π⁻) entre hydro et données qu'à 200 GeV
- Ne marche qu'à bas- p_T ($p_T < 1.5 2$ GeV/c)
- Échec à plus haut p_T (> 2 GeV/c) attendue:
 - Moins de rediffusions
 - Limite de validité ⇒ de l'hypothèse de thermalisation

P.F. Kolb, J. Sollfrank and U.Heinz, Phys. Rev. **C 62** (2000) 054909 P.F. Kolb and R. Rapp, Phys. Rev. **C 67** (2003) 044903 P.F. Kolb and U.Heinz, nucl-th/0305084

Spectres centraux Ω

- $T_{dec} \approx 100 \text{ MeV}$
- Pour les deux énergies
- Le même que pour π^2 , K², \overline{p}
- Accord valable pour le spectre entier !

T_{dec} ≈ 164 MeV (gel à l'hadronisation): pas suffisamment de flow radial

NA57 : C. Alt et al. Phys. Rev. Lett 94 (2005) 192301

Sont T_{dec}(hydro) et T_{kin}(B-W) la même quantit**é** physique ?

Dépendence en centralité : spectres Ω à 62 GeV

- Bon accord pour collisions centrales: l'accord diminue pour collisions périphériques
- Les spectres les plus périphériques pas reproduits par l'hydro
- Échec pour les collisions plus périphériques attendue :
 - Taille du système plus faible
 - Moins de rediffusions

L'hypothèse de

- ⇒ thermalisation moins valide avec moins de centralité
 - Caractériser les limites du « fluide parfait » ?

4 juillet 2006

v₂ des particules étranges à 200 GeV

- **Toutes** les particules étranges (y compris $\Omega(sss)$ et $\phi(ss)$) ont du flow
 - Indication pour thermalisation des quarks légers ?
- Différence baryon/méson à p_T intermédiaire (2 GeV/c < p_T < 5-6 GeV/c):
 - Indication pour mouvement collectif dans phase partonique (coalescence/recombinaison)

• Caractéristiques semblables qu'à 200 GeV:

- Hiérarchie en masse à bas-p_T
- Échec de l'hydro à partir de p_T ~ 2 GeV/c
- Flow du quark s
- ~ Même amplitude
- Même paramètres que pour les spectres
 - $T_{dec} \approx 100 \text{ MeV}$
 - $\alpha \neq 0 \text{ fm}^{-1}$

 $\alpha \neq 0 \text{ fm}^{-1} \Rightarrow \text{Accord spectre + } v_2 \text{ avec mêmes paramètres } !$

v₂ : Dépendence en centralité et

rapidité

L'hydro idéale génère trop de flow : remède = cascade

Vue étendue : hydro + cascade

- Hydro idéale dans phase partonique + transition (T_c)
- À T_{ch} ≈ T_c : modèle microscopique de cascade hadronique/partonique (RQMD, UrQMD,...)

hybride

• Tient compte de possibles effets dissipatifs dans phase hadronique

• Description complète : modélise aussi la période avant la thermalisation: CGC, fluctuations e-by-e (Nexus),...

T. Hirano and M. Gyulassy, nucl-th/0506049 T. Hirano, nucl-th/0601006

4 juillet 2006

J. Speltz - Etretat 2006

 CGC+hydro+cascade bonne description de dv₂/dη

Sommaire

Bon accord entre données (centrales, |y|<1) et l'hydrodynamique idéale :

- Spectres et v₂ à toutes les énergies du RHIC (62 GeV et 200 GeV)
- Utilisation d'une EoS avec transition de phase $QGP \rightarrow HG$
- Indication pour thermalisation rapide ($\tau_0 = 0.6$ fm/c)
- Découplage cinétique (T_{dec}) semble similaire pour toutes les particules dans l'hydro
 - Clarification nécessaire pour le B-W (mesures plus précises à bas-p_T, ...)
- L'hydrodynamique idéale échoue progressivement pour les collisions périphériques, à haut-pT, à grande rapidité
 - Description possible par différents outils qui tiennent compte d'effets dissipatifs
 - Possible caractérisation du début et des déviations de la « fluidité parfaite »?
- Pour les observables montrées :
 - Si un QGP est formé à 200 GeV il l'est vraisemblablement aussi à 62 GeV!
- Rien n'est vraiment parfait!

Viscosité

Pour de faibles déviations du comportement idéal (non visqueux) : hydrodynamique relativiste visqueuse

- η : « shear » viscosité
- $\frac{\Gamma_s}{\tau} \propto \frac{\eta}{s} \qquad \text{s: densité d'entropie}$
- $\Gamma_{\rm s}/\tau \sim 0.1 \Rightarrow \eta/s \sim \text{limite inférieure}$

P. Kovtun et al., hep-th/0405231

Comme η ~ 0.1 GeV/fm² autour de T_c dans un QGP et HQ, mais η/s plus large dans HG => réduction brusque de s => déconfinement

T. Hirano and M. Gyulassy, nucl-th/0506049

et

Utilisation d'une EoS avec QGP donne le meilleur accord avec les données U. Heinz and P. Kolb, hep-ph/0204061

4 juillet 2006

Compilation de Comparaisons

Spectres centrales à 62 GeV : Λ , Ξ

Blast-Wave avec Ξ

Dépendence en centralité : spectres Λ , Ξ à 62 GeV

v₂: Microscopic Parton Cascade

- Nécessite très large section efficace élastique
- Reproduit les données

D. Molnar and M. Gyulassy, Nucl. Phys. **A 697** (2002) 495

Comparaison v₂ 62 GeV et 200 GeV

4 juillet 2006

J. Speltz - Etretat 2006

23

Mise en échelle avec le nombre de quarks

constituants

v₂ : EOS Q et EOS H

Comparaison de différents modèles hydro

