

Jet physics at RHIC, lessons for LHC

Mercedes López Noriega CERN

QGP-France, Etretat 04.Jul.06

Physics motivation

- High energy partons, resulting from a initial hard scattering, will create a high energy cluster of particles \rightarrow jets
- Partons traveling through a dense color medium are expected to loose energy via medium induced gluon radiation, "jet quenching", and the magnitude of the energy loss depends on the gluon density of the medium
- Parton showering and the subsequent hadronization are known as "parton fragmentation"

Measurement of the parton fragmentation products may reveal information about the QCD medium

spectators

gluon radiation

eading high-p, hadron

spectators

I will talk about...

- Results from AuAu and pp collisions at $\int s_{NN} = 200 \text{ GeV}$ what do they tell us?
- Results from dAu collisions initial or final state effects?
- Latest results
 - "real" high p_T
 - different systems, different energies
- Jets at LHC

This presentation features only a selection of results: an overview of the RHIC results, with emphasis on new results

Finding jets

Mercedes López Noriega - Etretat - 4.Jul.06

 $\sqrt{s_{NN}} = 200 \ GeV$

AuAu vs. pp

high- p_T production in pp provides the baseline "vacuum" reference to heavy-ion to study the QCD medium properties

Are AuAu collisions just an incoherent superposition of pp ones? We want to compare central AuAu collisions to pp collisions.

$$R_{AB} = \frac{1}{T_{AB}(b)} \frac{d^2 N^{AB} / dp_T d\eta}{d^2 \sigma^{pp} / dp_T d\eta}$$

It measures the deviation of the AB collision at a given centrality from a superposition of pp collision.

If at high p_T :

 R_{AB} = 1 \rightarrow no nuclear effects

 $R_{AB} \mbox{\sc i} 1 \rightarrow$ enhanced hadron production in AuAu

 $R_{AB} \boldsymbol{<} 1 \rightarrow suppressed hadron production in AuAu$

Strong high- p_T hadron suppression

But photons...

Interaction in a dense colored medium?

Why dAu?

- High p_T suppression may be a result of:
 - initial state effects prior to hard scattering (such as saturation of gluon densities in the incoming nuclei) → suppression would also be seen in dAu collisions
 - final state effects due to interaction of partons with a dense medium \rightarrow suppression would not be observed in dAu collisions

dAu: the control experiment

R_{AB} in dAu

🖒 What do we learn from the suppression?

- It's a final state effect
- pQCD with energy loss calculations require initial density ~30-50 times cold nuclear matter density

Suppression supplies a lower limit on the energy density

Back-to-back correlations

PRL91, 072304 (2003)

What we know until here...

- Modification of jet fragmentation from interaction of high energy partons with a dense (colored) medium prior to hadronization
 - high- p_T hadron suppression (factor of 5)
 - prompt photons are not suppressed
 - high- p_{T} recoiling jet suppressed
 - in-medium path length dependence
- pQCD -based calculations with medium-induced energy loss \rightarrow density of the medium is high (30-50 times the one of cold nuclear matter)

R_{AA} independence of p_T

Energy dependence - R_{AA}

- Suppression observed for central AuAu at $\int s_{NN} = 62.4 \text{ GeV}$
- Increasing suppression with $\int s_{\rm NN}$ consistent with increasing initial parton densities and longer duration of the dense medium

R_{AA} scales with N_{part}

Suppression observed for central CuCu - "Testing" the L-dependence of ΔE

- CuCu adds significant precision at N_{part} ~100
- Fit to N^{α}_{part} prefers $\alpha \sim 1/3$ ($\alpha \sim 2/3$ not completely excluded)

Mercedes López Noriega – Etretat – 4.Jul.06

Azimuthal correlations at higher p_T

Jet yields at higher p_T

- Near side: no significant suppression little centrality dependence
- Away-side: suppressed suppression pattern independent of $p_{\mathsf{T}}^{\text{assoc}}$

Fragmentation function z_{T}

nucl-ex/0604018

<u>Δη</u>0

nucl-ex/0503022

 $\Delta \phi$

- b) Parton recombination (Chiu & Hwa Phys. Rev. C72:034903,2005)
- c) Radial flow + jet-queching (Voloshin nucl-th/0312065)

We might be seeing a <u>direct effect</u> of the jet coupling to the expanding medium, i.e. the effect of <u>medium-induced energy loss</u> on the jet

Full jet reconstruction at LHC

Leading Particle

Leading particle becomes fragile as a probe

- Surface emission:
 - -Small sensitivity of R_{AA} to medium properties.
- For increasing in medium path length L, the momentum of the leading particle is less and less correlated with the original parton 4-momentum.

Reconstructed Jet

- Ideally, the analysis of reconstructed jets will allow us to measure the original parton 4-momentum and the jet structure. → Study the properties of the medium through modifications of the jet structure:
 - Decrease of particles with high z, increase of particles with low z
 - Broadening of the momentum distribution perpendicular to jet axis

Jet rates at the Annual hard process yields LHC

Huge jet statistics from $E_{\tau} \sim 10$ GeV to $E_{\tau} \sim 100$ GeV

• Jets with E_{τ} > 50 GeV will allow full reconstruction of hadronic jets, even in the underlying heavy-ion environment.

 Multijet production per event extents to ~ 20 GeV

- Evidence for partonic energy loss in nuclear collisions has been seen at RHIC.
 - Suppression of high- $p_{\rm T}$ hadrons in AuAu and CuCu (not in pp or dAu)
 - Suppression of leading recoiling hadron in back-to-back correlations
- Measurements are consistent with pQCD-based energy loss calculations and provide a lower bound to the initial density.
- R_{AA} scales with N_{part} (AuAu and CuCu)
- *R*_{AA}(p_T): p_T-independent up to 20 GeV/c as expected by radiative energy loss models
- Reappearance of away-side jet at high $p_{\rm T}$
- Interesting Physics ahead
 - Full reconstruction of high energy jets at LHC

BACKUP SLIDES

 $4 < p_T^{trigger} < 6 \text{ GeV/c}$

29

(Reference: Scaled pp from UA1)

pp - baseline

"Higher" p_T , why?

- Intermediate p_T region (2 < p_T < 5 GeV/c)
 - mesons are more suppressed than baryons
 - elliptic flow v_2 larger for baryons than for mesons
 - this baryon/meson distinction does not depend on the mass

hadronization via coalescence or recombination of constituents quarks

Hadron production

 $p_T \leftarrow 5 \text{ GeV/c}$:

- deviation from vacuum fragmentation
- recombination picture

p_T > 5 GeV/c: fragmentation dominates

R_{AA} for CuCu

- "Testing" the L-dependence of ΔE
- Suppression observed for central CuCu

Components of $\Delta\eta \times \Delta\phi$ correlations

isolate the ridge-like correlation

Au+Au 20-30%

- a) Near-side jet-like corrl.
 + ridge-like corrl.
 + v₂ modulated bkg.
- b) Ridge-like corrl. + v_2 modulated bkg.
- c) Away-side corrl.
 + v₂ modulated bkg.

Extracting near-side "jet-like" yields

Au+Au 20-30%

1.5 Δη

3

 $\Delta \phi$

Jet and Jet+Ridge yields & widths

Correlate Jet ($\Delta\eta(J)$) and Jet+Ridge ($\Delta\phi(J+R)$) widths & yields via centrality

- Jet+Ridge yield increasing with centrality
- Jet+Ridge shape asymmetric in $\Delta\eta \;\underline{\text{and}}\; \Delta\phi$

Correlate Jet ($\Delta\eta(J)$) and Jet ($\Delta\phi(J)$) widths and yields via centrality

- Jet yield ~ symmetric in $\Delta\eta{\times}\Delta\phi$
- Jet shape ~ symmetric in $\Delta\eta \times \Delta\phi$ for $p_{t,trig} > 4$ GeV (asymmetric in $\Delta\eta$ for $p_{t,trig} < 4$ GeV)

Extracting the ridge yield

- \Rightarrow Definition of "ridge yield":
 - i) ridge yield := Jet+Ridge($\Delta \phi$ Jet($\Delta \eta$)
 - ii) relative ridge yield := ridge yield / Jet($\Delta \eta$)

Ridge yield in Au+Au I

- Relative ridge yield decreasing with trigger p_t
- Absolute ridge yield constant as function of trigger $\ensuremath{\textbf{p}}_t$

Ridge yield in Au+Au II

Ridge contribution significantly suppressed for $p_{t,assoc.} > 3$ GeV

Two-Particle Correlations (Mach Cone?)

- broad away-side distribution in central Au+Au
 - enhanced yield for lower $\boldsymbol{p}_{\mathsf{T}}$
 - consistent with two-peak structure
 - Mach cone or deflected jets? study 3-part. correlation
 - sensitive to elliptic flow subtraction
- dependence on trigger p_T ?
- enhanced yield for near-side
 - quantitatively consistent with ridge
 - near-side enhancement only ridge? vacuum fragmentation?

M. Horner et **42**. Poster

Mercedes López Noriega – Etretat – 4.Jul.06

J. Ulery et **æ**g. parallel talk

Three-Particle Correlations

- signal obtained by subtraction of dominant backgrounds
 - flow components, jet-related two-particle correlation
- improved analysis compared to QM (e.g. high statistics)
 - additional check with cumulant analysis under way
 - careful: different assumptions on background normalisation!
- clear elongation (jet deflection)
- off-diagonal signal related to mach cone?

J. Ulery et **44**. parallel talk

Full jet reconstruction at LHC

The leading particle as a probe becomes fragile in several respects.

Ideally, the analysis of reconstructed jets will allow us to measure the original parton 4-momentum and the jet structure. From this analysis a higher sensitivity to the medium parameters (transport coefficient) is expected.

Jet reconstruction in ALICE

$$R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$$

 Collimation: ~ 80% energy around jet axis in R < 0.3

• Background energy in cone of size R is $\sim R^2$ and background fluctuations $\sim R$.

In **pp-collisions** jets: excess of transverse energy within a typical cone of R = 1.

In heavy-ion collisions

- jets reconstructed using smaller cone sizes
- subtract energy from underlying event

Main limitations:

- Background energy. Reduced by:
 - reducing the cone size (R = 0.3-0.4)
 - transverse momentum cut (p_T = 1-2 GeV/c)
- Background energy fluctuations:
 - event-by-event fluctuations
 - Poissonian fluctuations of uncorrelated particles
 - fluctuations of correlated particles

Intrinsic performance limits

Energy contained in a subcone of radius R reduced by:

- reducing the cone size
- $\boldsymbol{\cdot}$ cutting on \boldsymbol{p}_{T}

- Limited cone size leads to a low energy tail
- Charged reconstruction (TPC) dominated by charged to neutral fluctuations

Reconstructed jet

• Study properties of the medium through the modifications on the transverse jet structure

Jet shape (dE/dr) and jet particle momentum perpendicular to jet axis (j_t) vs. reconstructed energy

 \bullet Study hard processes with low p_T observables by measuring the fragmentation function to low p_T . Energy loss and radiated energy

Decrease of hadrons in the high-z part and increase of hadrons in the low-z region of fragmentation function ($z = p_T / E_T^{jet}$)

Jet-structure observables

96

Mercedes López Noriegu - Lucui - I.Julio