

Les basses masses avec le spectromètre Dimuon d'ALICE

- ♦ I ntroduction générale
- Simulation des performances du spectromètre Dimuon

Motivations Physiques

L'étude des di-leptons de basses masses offre la possibilité d'étudier des sujets de physique intéressants :

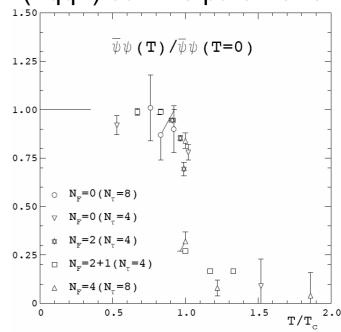
- Effets de milieu sur la masse et la largeur des mésons vecteurs
 - → ce qui est due à la restauration de la symétrie chirale
- Augmentation de l'étrangeté au travers du méson φ
- → lien avec l'augmentation générale de l'étrangeté dans la phase déconfinée

Symétrie chirale

Symétrie chirale = symétrie du lagrangien de QCD lorsque M_{quarks} ⋘ 0

$$M_{quarks} \neq 0$$
, mais $M_{u,d} << \Lambda_{QCD}$ $(M_u \approx M_d \approx qqMeV \text{ et } \Lambda_{QCD} \approx 1 \text{ GeV})$

⇒ La symétrie chirale peut être considérée comme une symétrie approximative de QCD


On utilise la valeur du condensat de quark (<qq>) comme paramètre

d'ordre de la symétrie chirale

Un paramètre d'ordre ≠ 0

⇒ brisure spontanée de la symétrie

$$_0 \approx -(240 \text{ MeV})^3$$

Pourquoi les mésons vecteurs de basses masses ?

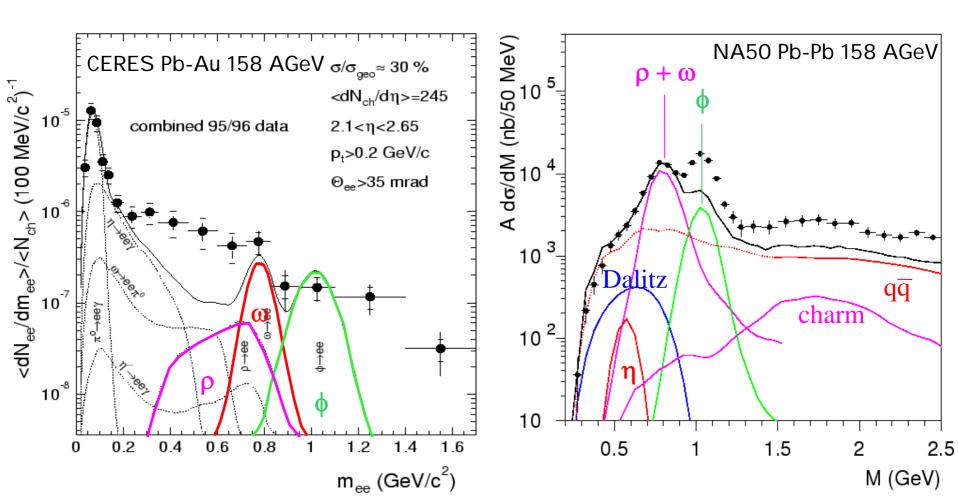
Résonance	ρ	ω	ф	J/ψ	Υ
Masse (MeV/c²)	770	782	1020	3097	9460
Largeur (MeV/c²)	150	8.4	4.4	0.087	0.052
cτ (fm)	1.3	23.4	45	2268	3752
BR μ ⁺ μ ⁻ (%)	4.6 10 ⁻³	9.0 10 ⁻³	2.9 10 ⁻²	5.9	2.5

Les mésons de basses masses ont un temps de vie plus court :

- plus sensible aux effets de milieu (restauration de la symétrie chirale),
- masse invariante des dimuons reflète directement leurs distributions en masse au moment de la décroissance.

Les quarkonia de haute masse ont un temps de vie très supérieur à celui du QGP :

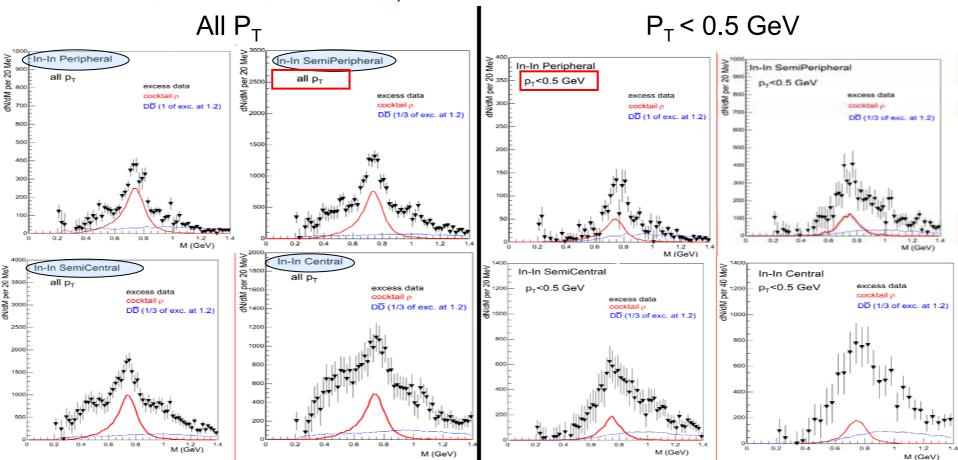
- plus sensible aux effets du déconfinement
- le signal réside plus dans l'amplitude que dans la forme de la distribution en masse



Mesures précédentes

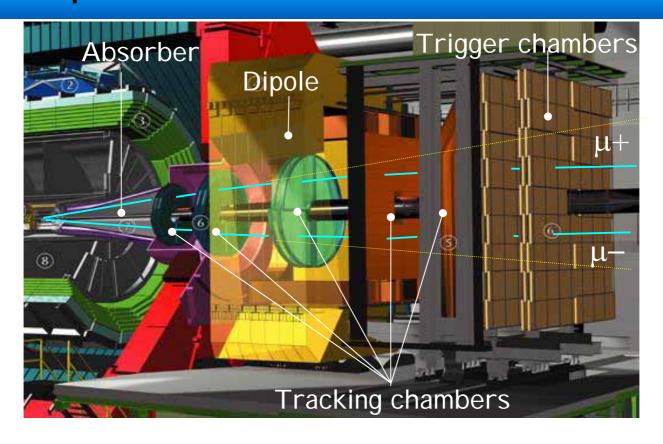
- Excès dans LMR (0.2-0.6 GeV) observé par CERES en diélectrons
- Pas de modification vue par NA50 en dimuons

Mesures pas forcément contradictoires car zones cinématiques différentes

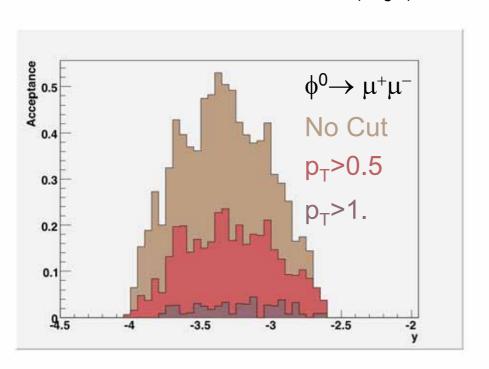

Résultats de NA60

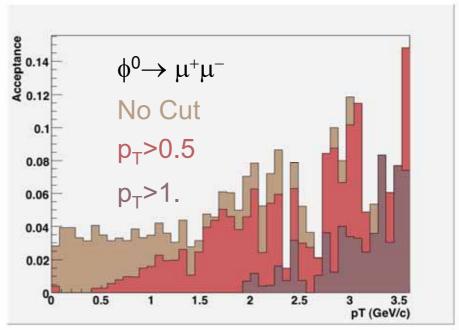
NA60 a mesuré les basses masses en dimuons avec une résolution et une statistique jamais atteinte (σ_{ϕ} = 23 MeV)

Net excès piqué à M_o augmentant avec la centralité


Et effet plus marqué à bas p_T

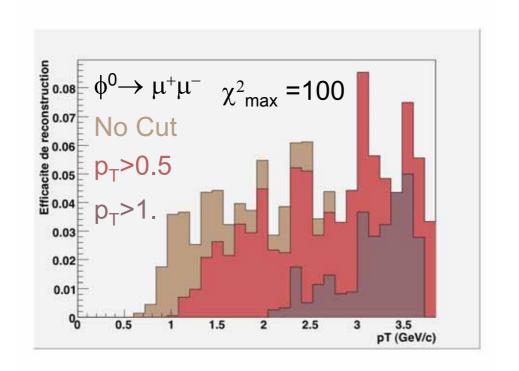
Le spectromètre dimuon d'ALICE


- Absorber, beam shield, muon filter
- Dipole magnet (0.7 T)
- Tracking: 5 stations of 2 plans of Cathode Pad Chambers
- Trigger: 2 stations of 2 plans of Resistive Plate Chambers



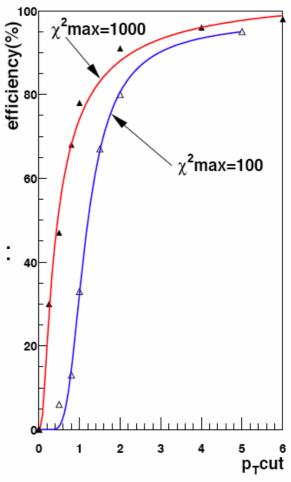
Acceptances

Acceptance quasi-nulle pour $p_{T (dimu)} < 0.5$ GeV due à la coupure naturelle du spectro à $p_{T (single)} \sim 0.5$ GeV/c




Les effets de milieu recherchés sont surtout visible à bas p_T

Efficacité de reconstruction

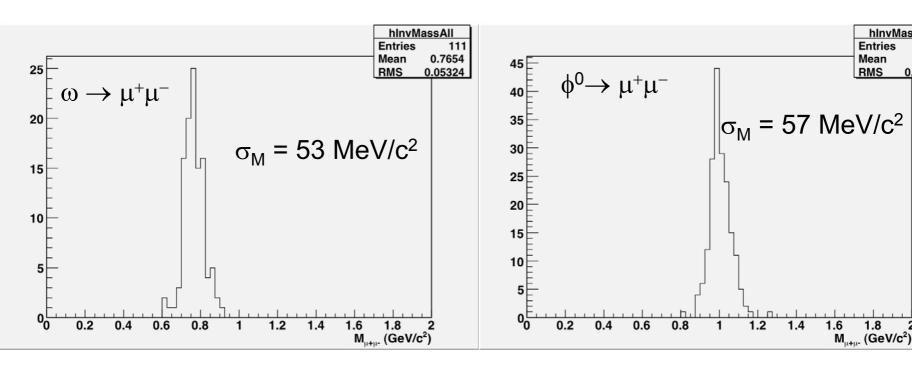


 \Rightarrow Augmentation de χ^2_{max} de 100 à 1000

 $\Delta p/p \ (\phi): 1\% \rightarrow 2\% \ quand \ \chi^2_{max} \ 100 \rightarrow 1000$

Résolutions

Entries

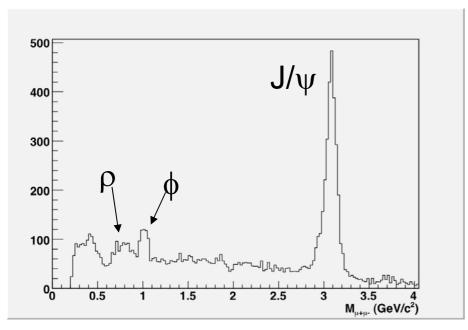

1.005

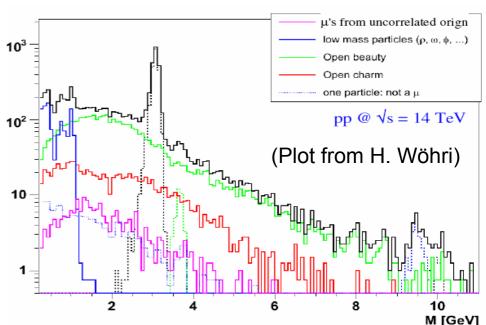
0.05715

Mean

Résolutions obtenues avec $p_{T(single)} > 0.5 \text{ GeV/c et } \chi^2_{max} = 1000$

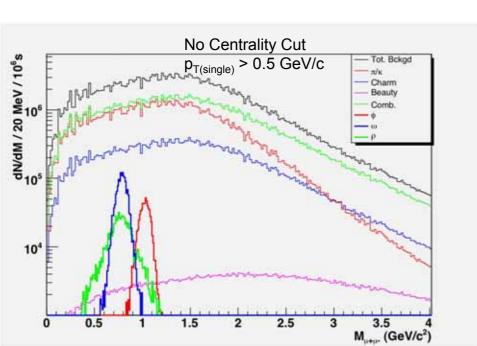
Le passage à χ^2_{max} =1000 n'a aucune influence sur la résolution en masse

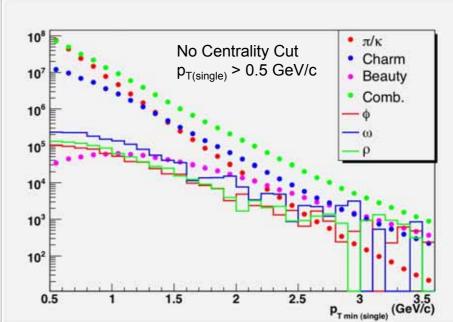




Collisions p-p à 14 TeV

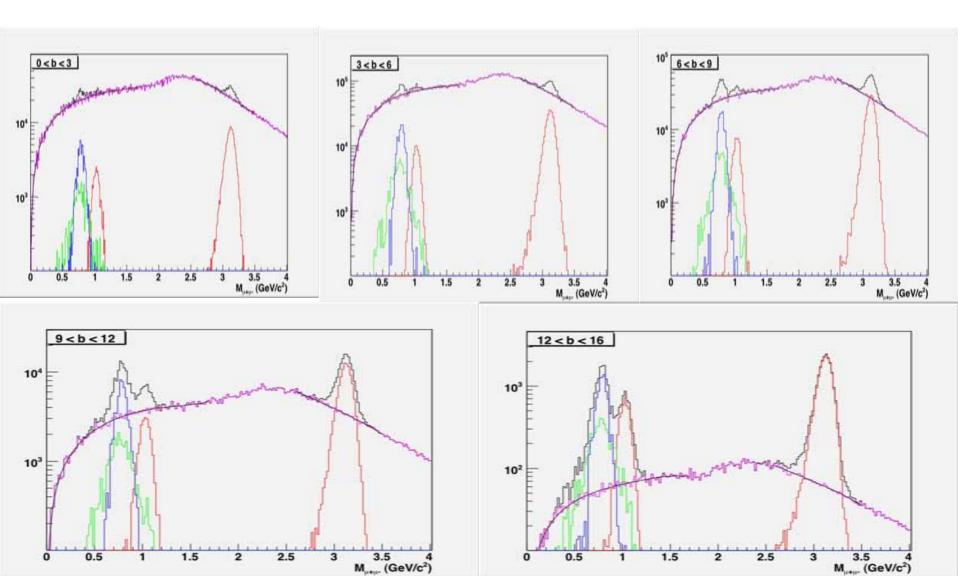
- ➤ AliGenMUONCocktailpp préparé pour le PDC06, pp @ √s = 14 TeV:
 - Comprends les résonances (J/ ψ , ψ ', Υ , Υ ', Υ ") et
 - événements MB Pythia, incl. Charme et beauté ouverte + les basses masses
- ➤ Sélection des événements : au moins 2 muons dans le spectro + p_T cut à 1 GeV/c
- \triangleright Génération dans 4π avec tous les canaux de décroissance ouverts (pas de biais)




Collisions Pb-Pb

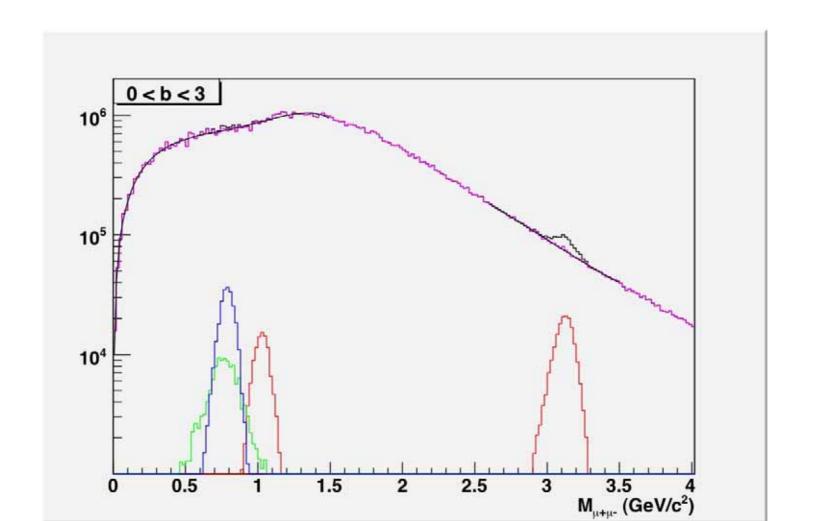
Collisions @ 5.5 TeV/n; L = 5.10^{26} cm⁻².s⁻¹; 1 mois de données (10^6 s)

- Bruit de fond non-corrélé : FASTSIM (uncorrBg.C)
- Résonances générées avec AliGenParam normalisation en utilisant les résultats de Pythia à 5.5 TeV



Spectre en masse vs. Centralité

 P_T (single) > 1 GeV/c + Coupure basse en P_T pour le trigger



Spectres en masse avec p_T(single) > 0.5 GeV

 P_T (single) > 0.5 GeV/c + Coupure naturelle en P_T du spectro

Rapport Signal sur Bruit

P _⊤ (single) > 0.5 GeV/c								
Résonance	0 <b<3 fm<="" td=""><td>3<b<6 fm<="" td=""><td>6<b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9></td></b<6></td></b<3>	3 <b<6 fm<="" td=""><td>6<b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9></td></b<6>	6 <b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9>	9 <b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12>	12 <b<16 fm<="" td=""></b<16>			
ρ	0.009	0.013	0.025	0.09	0.9			
ω	0.037	0.052	0.101	0.35	3.7			
ф	0.014	0.020	0.039	0.13	1.5			

P _⊤ (single) > 1 GeV/c								
Résonance	0 <b<3 fm<="" td=""><td>3<b<6 fm<="" td=""><td>6<b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9></td></b<6></td></b<3>	3 <b<6 fm<="" td=""><td>6<b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9></td></b<6>	6 <b<9 fm<="" td=""><td>9<b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12></td></b<9>	9 <b<12 fm<="" td=""><td>12<b<16 fm<="" td=""></b<16></td></b<12>	12 <b<16 fm<="" td=""></b<16>			
ρ	0.05	0.07	0.13	0.4	5.1			
ω	0.19	0.28	0.51	1.9	19.7			
ф	0.08	0.11	0.21	0.7	8.1			

Conclusions

Etudes des résonances de basses masses possible avec ALICE-Dimuon

Il va falloir trouver un compromis entre :

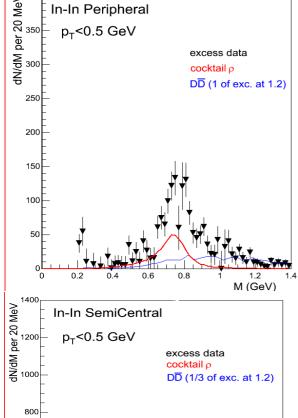
optimisation du rapport S/B

 \Rightarrow Coupure à p_T(single) > 1 GeV/c

• et optimisation de l'acceptance à bas p_T

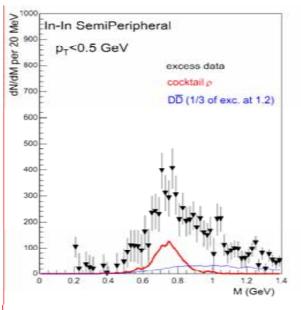
 \Rightarrow Coupure à p_T(single) > 0.5 GeV/c

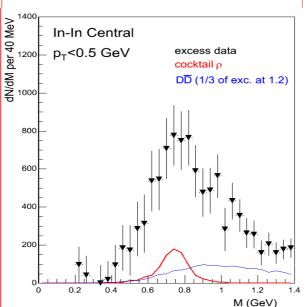
Car les effets de milieu recherché son dominant à bas p_T



400

200


Excess spectra from difference datacocktail



0.8

M (GeV)

No cocktail pand no DD subtracted

Clear excess above the cocktail ρ, centered at the nominal ρ pole and rising with centrality

Similar behaviour in the other p_T bins