La sonde γ-jet dans ALICE

- \square Jets / γ -jets :
 - Comparaison RHIC LHC.
 - Observables.
- ☐ Moyens:
 - Détecteurs.
 - Algorithmes.
- ☐ Identification des particules (PID) :
 - Principe, techniques.
 - Résultats préliminaires.

Comparaison RHIC - LHC

Jets au LHC – Jets à RHIC

- ☐Statistiques accrues.
 - •plus de 2 ordres de grandeur à 30 GeV.
 - Accès à des jets de plus grande énergie (jusqu'à 200 GeV).
- □Étude événement par événement.
- □Propriétés différentes de l'atténuation des jets.
 - •Densité d'énergie 3 à 10 fois supérieure.

γ-jet

Statistiques.

Accès à l'énergie du jet.

Fonction de fragmentation

Jet-quenching:

- ▲Bas p_T ; ▼ Grand p_T
- ⇒ Modification du hump-backed plateau.

Méthodes, Algorithmes

PID, identification des particules

 γ , e[±], π ° et hadrons.

Paramètres discriminants.

Distributions ([γ , e[±], π °, hadrons], énergie).

Probabilité pour la nature de la particule (méthode Bayesienne).

PID, paramètres

- □Événement par événement :
 - **-**γ / π°
 - ➤ Forme de la gerbe électromagnétique (SSA).
 - >Temps de vol.
 - Leptons et hadrons chargés (accord trajectoires TPC traces EMCal).
 - ➤ Distance TPC / EMCal.
 - **≻**E/p.
- ☐Méthode statistique :
 - **-**γ / π°
 - ➤ Masse invariante.

PID, forme de la gerbe

Forme de la gerbe λ_0 :

Cluster dans EMCAL

Gustavo Conesa, thèse : Université de Nantes, 2005

PID, distribution λ_0^2

Distributions identiques à haute énergie. Plage en énergie utilisable ~ 10 à 30 GeV.

PID, paramétrage

Exemple du π° :

Gaussienne

+ Landau:

6 paramètres.

PID, résultats préliminaires Différenciation π°/γ .

Développements futurs

- PID:
 - Temps de vol : travail identique à la forme de gerbe.
 - •Correspondance avec les traces de la TPC pour les charges de particules.
 - •Effet du bruit de fond dans collisions p-p / Pb-Pb.
- \square γ -jet :
 - •Code de reconstruction des γ -jets avec EMCal.
 - Comparaisons Pb-Pb / p-p.

Modification de la fonction de fragmentation ?

En PLUS

Angle entre les gammas de désintégration du PiO

PID pour EMCAL

Paramétrage des distributions f(E): exemple du pion neutre

PID pour EMCAL

PID pour EMCAL

Différence avec RHIC

Central collisions	SPS	RHIC	LHC
√s _{NN} (TeV)	17	200	5500
dN_{ch}/dy	500	850	2-8 x10 ³
ε (GeV/fm³)	2.5	4–5	15-40
$V_f(fm^3)$	10^{3}	$7x10^{3}$	$2x10^{4}$
$ au_{QGP} (fm/c)$	<1	1.5-4	4–10
$ au_0 (ext{fm/c})$	~1	~0.5	<0.2

Yellow report, Hard probes..., jet physics hep-ph/0310274

I. Vitev. Hep-ph/0212109

Reconstruction des jets

Photon dans PHOS : photon le plus énergétique (pT>20 GeV)

Leading particle : hadron chargé ou pi° émis à l'opposé du gamma (0.9 pi<delta phi< 1.1 pi), au moins 10% de l'énergie du gamma.

Reconstruction du jet cône ouverture R= 0.3, minimum des pT des particules 0.5 (2) GeV/c pour p-p (Pb-Pb)