La sonde γ -jet dans ALICE \Box Jets / γ -jets :

- Comparaison RHIC LHC.
- Observables.

□ Moyens :

- Détecteurs.
- Algorithmes.

□ Identification des particules (PID) :

- Principe, techniques.
- Résultats préliminaires.

Guénolé BOURDAUD

Jets au LHC – Jets à RHIC

Statistiques accrues.
•plus de 2 ordres de grandeur à 30 GeV.
• Accès à des jets de plus grande énergie (jusqu'à 200 GeV).
Étude événement par événement.
Propriétés différentes de l'atténuation des jets.
•Densité d'énergie 3 à 10 fois supérieure.

γ-jet

Fonction de fragmentation

▲Bas p_T ; ▼ Grand p_T ⇒ Modification du hump-backed plateau. Observables

Détecteurs

TPC

Noyens

EMCal

yens

PID, identification des particules γ , e[±], π° et hadrons. Paramètres discriminants. Distributions ([γ , e[±], π° , hadrons], énergie). Probabilité pour la nature de la particule (méthode Bayesienne).

DÉvénement par événement :

□γ / π°

Forme de la gerbe électromagnétique (SSA). ≻Temps de vol. Leptons et hadrons chargés (accord trajectoires TPC traces EMCal). ➢ Distance TPC / EMCal. ≻E/p. □Méthode statistique :

PID, paramètres

• γ / π° >Masse invariante.

PID, forme de la gerbe λ_0 :

Cluster dans EMCAL

Gustavo Conesa, thèse : Université de Nantes, 2005

 π°

 π°

Energie croissante

PID, distribution λ_0^2

Distributions identiques à haute énergie. Plage en énergie utilisable ~ 10 à 30 GeV.

PID, paramétrage

Exemple du π° :

Gaussienne + Landau :

6 paramètres.

PID, résultats préliminaires

PID moyen pour 100 PIONS

Différenciation π°/γ .

PID

Développements futurs

PID :

•Temps de vol : travail identique à la forme de gerbe.

•Correspondance avec les traces de la TPC pour les charges de particules.

•Effet du bruit de fond dans collisions p-p / Pb-Pb.

Ο γ-jet :

•Code de reconstruction des γ -jets avec EMCal.

•Comparaisons Pb-Pb / p-p.

Modification de la fonction de fragmentation ?

En PLUS

Angle entre les gammas de désintégration du PiO

PID pour EMCAL Paramétrage des distributions f(E): exemple du pion neutre

ENERGIE GeV

PID pour EMCAL

PID pour EMCAL

Différence avec RHIC

20

Central collisions	SPS	RHIC	LHC
√s _{NN} (TeV)	17	200	5500
dN_{ch}/dy	500	850	2-8 x10 ³
٤ (GeV/fm ³)	2.5	4–5	15-40
V _f (fm ³)	10 ³	7x10 ³	2x10 ⁴
$\tau_{QGP} (fm/c)$	<1	1.5-4	4–10
$\tau_0 (fm/c)$	~1	~0.5	<0.2

Yellow report, Hard probes..., jet physics hep-ph/0310274 I. Vitev. Hep-ph/0212109

Reconstruction des jets

Photon dans PHOS : photon le plus énergétique (pT>20 GeV)

Leading particle : hadron chargé ou pi[°] émis à l'opposé du gamma (0.9 pi<delta phi< 1.1 pi), au moins 10% de l'énergie du gamma.

Reconstruction du jet cône ouverture R= 0.3, minimum des pT des particules 0.5 (2) GeV/c pour p-p (Pb-Pb)