Pions et photons durs à RHIC

François Arleo

LPTHE, Jussieu

Etretat – Juin 2005

Plan de l'exposé

- Motivations
 - Pertes d'énergie et déconfinement
- Modèle
 - Distribution de probabilité
 - Fonctions de fragmentation modifiées
- Phénoménologie
 - Pions durs
 - Photons prompts

Discussion

Motivations

François Arleo (LPTHE)

Motivations

Comment – dans ce désordre – sonder le déconfinement ?

François Arleo (LPTHE)

Nombreuses collisions molles du parton dur

• Rayonnement de gluons $dI/d\omega$ proportionnel à la densité du milieu

[Baier, Dokshitzer, Mueller, Peigné, Schiff 1996, 1997]
 [Gyulassy, Wang 1994; Gyulassy, Lévai, Vitev 2000]
 [Zakharov 1996 1997 1998 ; Wiedemann 2000 2001]

Nombreuses collisions molles du parton dur

- Rayonnement de gluons $dI/d\omega$ proportionnel à la densité du milieu
- Pertes d'énergie très importantes dans le plasma quarks gluons

Nombreuses collisions molles du parton dur

- Rayonnement de gluons $dI/d\omega$ proportionnel à la densité du milieu
- Pertes d'énergie très importantes dans le plasma quarks gluons

Comment les mettre en évidence ?

François Arleo (LPTHE)

Une observable expérimentale claire

Atténuation des jets dans les collisions d'ions lourds

[Bjorken 1982; Gyulassy & Wang 1992]

Ce que l'on connait

François Arleo (LPTHE)

Ce que l'on connait

- Théorie
 - spectre de gluons rayonnés

$$\frac{dI}{d\omega}(\omega) = \frac{\alpha_s C_R}{\pi \omega} \ln \left[\cosh^2 \sqrt{\frac{\omega_c}{2\,\omega}} - \sin^2 \sqrt{\frac{\omega_c}{2\,\omega}} \right]$$

Ce que l'on connait

- Théorie
 - spectre de gluons rayonnés

$$\frac{dI}{d\omega}(\omega) = \frac{\alpha_s C_R}{\pi \omega} \ln \left[\cosh^2 \sqrt{\frac{\omega_c}{2\,\omega}} - \sin^2 \sqrt{\frac{\omega_c}{2\,\omega}} \right]$$

- Expérience
 - facteur de suppression

$$\frac{R_{AA}(p_{\perp})}{dp_{\perp}^2} / \frac{A^2 \, d\sigma_{pp}(p_{\perp})}{dp_{\perp}^2}$$

Ce que l'on connait

- Théorie
 - spectre de gluons rayonnés

$$\frac{dI}{d\omega}(\omega) = \frac{\alpha_s C_R}{\pi \omega} \ln \left[\cosh^2 \sqrt{\frac{\omega_c}{2\,\omega}} - \sin^2 \sqrt{\frac{\omega_c}{2\,\omega}} \right]$$

- Expérience
 - facteur de suppression

$$R_{AA}(p_{\perp}) = \frac{d\sigma_{AA}(p_{\perp})}{dp_{\perp}^2} / \frac{A^2 \, d\sigma_{pp}(p_{\perp})}{dp_{\perp}^2}$$

Comment relier $dI/d\omega$ à R_{AA} ?

Modèle

Diffusions multiples diminuent l'énergie de k_{\perp} à $k_{\perp}-\epsilon$

Modèle

Diffusions multiples diminuent l'énergie de k_{\perp} à $k_{\perp}-\epsilon$

$$\mathbf{x}_{\mathbf{k}_{\mathrm{T}}}^{\mathbf{k}_{\mathrm{T}}} \overset{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}}{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}} = \mathbf{h}$$

Modèle simple pour les fonctions de fragmentation [Wang, Huang, Sarcevic PRL 1996]

$$zD_{h/k}^{med}(z,\mu) = \int_0^{(1-z)E} d\epsilon \ \mathcal{P}(\epsilon,E) \ z^* D_{h/k}(z^*,\mu)$$

avec $z^* = \frac{E_h}{\nu - \epsilon} = \frac{z}{1 - \epsilon/\nu}$

Modèle

Diffusions multiples diminuent l'énergie de k_{\perp} à $k_{\perp}-\epsilon$

$$\mathbf{x}_{\mathbf{k}_{\mathrm{T}}}^{\mathbf{k}_{\mathrm{T}}} \overset{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}}{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}} = \mathbf{h}$$

Modèle simple pour les fonctions de fragmentation [Wang, Huang, Sarcevic PRL 1996]

$$zD_{h/k}^{med}(z,\mu) = \int_0^{(1-z)E} d\epsilon \ \mathcal{P}(\epsilon,E) \ z^* D_{h/k}(z^*,\mu)$$

avec $z^* = \frac{E_h}{\nu - \epsilon} = \frac{z}{1 - \epsilon/\nu}$

Comment calculer $\mathcal{P}(\epsilon, E)$?

Distribution de probabilité $\mathcal{P}(\epsilon)$

[Baier, Dokshitzer, Mueller, Schiff JHEP 2001]

Rayonnement indépendant - approximation de Poisson

• Unique ingrédient: le spectre de gluons $dI/d\omega$

Distribution de probabilité $\mathcal{P}(\epsilon)$

[Baier, Dokshitzer, Mueller, Schiff JHEP 2001]

Echelle pertinente du spectre de gluons $dI/d\omega$

$$\omega_c = \frac{1}{2} \,\hat{q} \, L^2$$

- \hat{q} : coefficient de transport
 - "pouvoir de diffusion" du milieu $\hat{q} = \mu^2 / \lambda$
- L : longueur parcourue par le parton dans le milieu

Distribution de probabilité $\mathcal{P}(\epsilon)$

[FA JHEP 2002] [Salgado, Wiedemann PRL 2002]

- Distribution asymétrique
- Calculée pour différents spectres dI/dω

Fonctions de fragmentation

rightarrow Forte suppression à grand z

François Arleo (LPTHE)

Pions et photons durs à RHIC

Spectre p p

Très bon accord avec les données de PHENIX
 contraintes possibles sur les FF

Spectre p p

Très bon accord avec les données de PHENIX
 contraintes possibles sur les FF

Spectre Au Au

François Arleo (LPTHE)

Spectre Au Au

• Forte suppression dans le canal π^0

• Bon accord à grand p_{\perp} pour $\omega_c \simeq 20 - 25 \text{ GeV}$

Terminologie

- Photons prompts
 - produits dans les collisions NN
- Photons thermiques
 - rayonnement du plasma quarks-gluons
- Photons de décroissance
 - décroissances radiatives

 $p_{\perp} \gg \Lambda_{QCD}$

 $p_{\perp} = \mathcal{O}\left(T\right)$

 $\pi^0 \to \gamma \gamma$

$$\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$$

$$\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$$

$$+\sum_{i,j,k=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) F^A_{j/h_2}(x_2) \ \frac{dz}{z^2} \ D_{\gamma/k}(z,\mu) \ \frac{d\widehat{\sigma}^k_{ij}}{d\vec{p}_T d\eta}$$

François Arleo (LPTHE)

$$\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$$

$$+\sum_{i,j,k=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) F^A_{j/h_2}(x_2) \ \frac{dz}{z^2} \ D^{\text{med}}_{\gamma/k}(z,\mu) \ \frac{d\widehat{\sigma}^k_{ij}}{d\vec{p}_T d\eta}$$

François Arleo (LPTHE)

- Photons directs
 - similaires au Drell-Yan
- Photons de bremmstrahlung
 - similaires aux jets

Schématiquement

- Sondes colorées
 - jets
 - quarkonia lourds
 - •
- Sondes aveugles
 - Drell-Yan
 - W^{\pm}, Z
 - •

(modifiées par le milieu dense)

(non-modifiées)

Schématiquement

- Sondes colorées
 - 🔍 jets
 - quarkonia lourds
 - photons prompts
- Sondes aveugles
 - Drell-Yan
 - W[±], Z
 - photons prompts

Appartiennent aux deux catégories !

(modifiées par le milieu dense)

(non-modifiées)

Spectre p p

Bon accord avec les données de PHENIX
 nouvelles contraintes !

Spectre p p

Bon accord avec les données de PHENIX
 nouvelles contraintes !

Spectre Au Au

- Suppression beaucoup plus faible que les π^0
- Effet d'isospin pas négligeable

François Arleo (LPTHE)

• Sous-estimation à grand p_{\perp}

François Arleo (LPTHE)

 γ/π^0

- \bullet Données $p\,p$ cohérentes avec QCD à NLO
 - pions et photons prompts
 - contraintes sur les FF

- \bullet Données $p\,p$ cohérentes avec QCD à NLO
 - pions et photons prompts
 - contraintes sur les FF
- Modèle (simple) de pertes d'énergie
 - accord avec les données d-Au et Au-Au

- \bullet Données $p\,p$ cohérentes avec QCD à NLO
 - pions et photons prompts
 - contraintes sur les FF
- Modèle (simple) de pertes d'énergie
 - accord avec les données d-Au et Au-Au
- Problèmes
 - photons prompts (légèrement) sous-estimés
 - décroissance de $R_{\scriptscriptstyle AA}$ à faible p_{\perp}
 - systématique plus importante

A-t'on appris quelquechose ? (et si oui, quoi)

- \bullet Données $p\,p$ cohérentes avec QCD à NLO
 - pions et photons prompts
 - contraintes sur les FF
- Modèle (simple) de pertes d'énergie
 - accord avec les données d-Au et Au-Au

Admettons (par la suite) que les pertes d'énergie soient responsables de la suppression observée ...

Données RHIC

 $\omega_c \simeq 20 - 25 \text{ GeV}$

Données RHIC

 $\omega_c \simeq 20 - 25 \text{ GeV}$

Coefficient de transport moyen

(avec $\langle L \rangle = 5$ fm)

$$\langle \hat{q} \rangle_{\text{RHIC}} = \frac{2 \,\omega_c}{\langle L \rangle^2} \simeq 0.3 - 0.4 \text{ GeV}^2/\text{fm}$$

Données RHIC

 $\omega_c \simeq 20 - 25 \text{ GeV}$

Coefficient de transport moyen (avec $\langle L \rangle = 5$ fm)

$$\langle \hat{q} \rangle_{\text{RHIC}} = \frac{2 \,\omega_c}{\langle L \rangle^2} \simeq 0.3 - 0.4 \text{ GeV}^2/\text{fm}$$

Coefficient de transport initial

(avec Bjorken et $t_0 = 0.5$ fm)

$$\hat{q}_{\text{RHIC}}(t_0) \simeq \frac{\omega_c}{t_0 \langle L \rangle} \simeq 1.6 - 2 \text{ GeV}^2/\text{fm}$$

Données RHIC

 $\omega_c \simeq 20 - 25 \text{ GeV}$

Coefficient de transport moyen (avec $\langle L \rangle = 5$ fm)

$$\langle \hat{q} \rangle_{\text{RHIC}} = \frac{2 \,\omega_c}{\langle L \rangle^2} \simeq 0.3 - 0.4 \text{ GeV}^2/\text{fm}$$

Coefficient de transport initial

(avec Bjorken et $t_0 = 0.5$ fm)

$$\hat{q}_{\text{RHIC}}(t_0) \simeq \frac{\omega_c}{t_0 \langle L \rangle} \simeq 1.6 - 2 \text{ GeV}^2/\text{fm}$$

Comparons avec la matière nucléaire froide ...

François Arleo (LPTHE)

Pions et photons durs à RHIC

Estimation perturbative

[Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997]

 \hat{q} relié à la densité de gluons

$$\hat{q} = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$$

$$\simeq 0.05 \text{ GeV}^2/\text{fm}$$

Estimation perturbative

[Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997]

0

~ ~

$$\hat{q}$$
 relié à la $\hat{q} = \frac{4 \pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$
densité de gluons $\simeq 0.05 \text{ GeV}^2/\text{fm}$

Contraintes à partir de la production de Drell-Yan [FA PLB 2002]

Fortes pertes d'énergie exclues

Estimation perturbative

Estimation perturbative

Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997

0

$$\hat{q}$$
 relié à la $\hat{q} = \frac{4 \pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$
densité de gluons $\simeq 0.05 \text{ GeV}^2/\text{fm}$

Contraintes à partir de la production de Drell-Yan [FA PLB 2002]

Fortes pertes $\hat{q} = 0.15 \pm 0.10 \ {
m GeV^2/fm}$ d'énergie exclues

Comparaison avec HERMES

[FA EPJ C 2003]

 Données DIS décrites avec l'estimation de *q̂* en DY

Baier NPA 2002

Matière froidepQCD

Baier NPA 2002

- Matière froide
 - pQCD
 - Drell-Yan et DIS

Matière froide

• $\langle \hat{q} \rangle_{\rm RHIC}$

Baier NPA 2002

Matière froide

François Arleo (LPTHE)

Très naïvement ...

 $\epsilon (t_0 \simeq 0.5 \,\mathrm{fm}) \gtrsim 10 \,\mathrm{GeV/fm^3}$ a RHIC

François Arleo (LPTHE)

Très naïvement ...

 $\epsilon (t_0 \simeq 0.5 \,\mathrm{fm}) \gtrsim 10 \,\mathrm{GeV/fm^3}$ a RHIC

... mais nombreuses incertitudes théoriques

- suppose un milieu thermalisé (et à $t_0 = 0.5$ fm !)
- \hat{q} dépend de
 - modélisation de la géométrie
 - hypothèse d'expansion longitudinale et transverse
- correspondance $\hat{q} \epsilon$ indicative uniquement

[FA, Aurenche, Belghobsi, Guillet JHEP 2004] A l'ordre dominant en α_s

[FA, Aurenche, Belghobsi, Guillet JHEP 2004] A l'ordre dominant en α_s

• Mesure "directe" de z

$$z_{34} \equiv -\frac{\vec{p}_{T_3} \cdot \vec{p}_{T_4}}{|\vec{p}_{T_3}|^2} \simeq z$$

• Réminiscent des fonctions de frag. $D_{\pi/k}^{\text{med}}(z,\mu)$

• Réminiscent des fonctions de frag. $D_{\pi/k}^{\text{med}}(z,\mu)$ • Effets importants à RHIC

Limites

- "Bruit de fond"
 - photon produit par fragmentation

Limites

- "Bruit de fond"
 - photon produit par fragmentation
- Corrections NLO et resommation
 - $\hfill \ensuremath{\bullet}$ pas de prédictivité à petit / grand z

Limites

- "Bruit de fond"
 - photon produit par fragmentation
- Corrections NLO et resommation
 - pas de prédictivité à petit / grand z
- (assez) Faibles taux de comptage
 - grande luminosité à RHIC ?

• Données π^0 cohérentes avec les pertes d'énergie

François Arleo (LPTHE)

- Données π^0 cohérentes avec les pertes d'énergie
- Coeff. de transport très supérieur à la matière froide

- Données π^0 cohérentes avec les pertes d'énergie
- Coeff. de transport très supérieur à la matière froide
- $\bullet~$ Densité d'énergie atteinte $\epsilon_{\rm \tiny RHIC} \simeq 50~\epsilon_{\rm \tiny noyau}$

