Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma:

The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

- Predicted signatures of the QGP
- 2. Bulk properties
- 3. Intermediate sector
- 4. Hard probes
- 5. Overview and outlook

Avant-propos du SWP

1. Définition

QGP ≡ un état de la matière en <u>équilibre (localement) thermique</u> state dans lequel les <u>quarks et gluons sont déconfinés</u> des hadrons, de manière telle que des <u>degrés de liberté colorés</u> sont mieux à même de décrire les états nucléaires, plutôt que des degrés de liberté nucléoniques.

2. Non exigés :

- Des quarks et des gluons sans interaction
- > Une transition du 1^{er} ou du 2nd ordre
- Une évidence de la restauration de la symétrie chirale

3. Choix

Résultats de RHIC à tendance STAR

Densités de rapidité

Multiplicité

Progression monotone de la multiplicité

Énergie

<u>Bjorken</u> : matière sans interaction en expansion longitudinale

> > ε_c (QCD) ~1 GeV/fm³

Augmentation par rapport au SPS en raison de la croissance de la multiplicité

Au freeze-out chimique

Au freeze-out thermique

Remonter au début par le flot elliptique

Asymétrie dans l'espace des impulsions \Box Interactions entre les constituants \Rightarrow gradient de pression : asymétrie spatiale \Rightarrow impulsion

Émission des particules avec un angle défini par rapport au plan de réaction (décomposition en série de Fourier)

$$\frac{d^2N}{dp_T^2 d\phi} = \frac{dN}{2\pi dp_T^2} \left(1 + 2\sum_n v_n \cos(n\phi)\right)$$

 \Box A y ~ 0 : le flow v₁ disparaît, seul v₂ demeure.

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle = \left\langle \cos(2\phi) \right\rangle \quad \phi = \tan^{-1} \left(\frac{p_y}{p_x} \right)$$

v₂ sensible aux 1^{ers} instants de la collision donc aux interactions partoniques dans le milieu dense

> JY Ollitrault PR D46(1992)229 H Sorge PRL B402(1997) 251 ₇

RHICFrance, 29 juin 2005

p_x

Fonction d'excitation du flot

Thermalisation ?

- Hypothèse un fluide idéal qui permet de reproduire :
 - Magnitude du v₂
 - \succ Dépendance en masse du v₂ , signe d'une vitesse de flot commune
- L'hydro suggère une thermalisation très tôt (τ_{therm} < 1 fm/c) une EoS soft (phase mixte)
- \equiv l'un des points clés des observations à RHIC

⇒ STAR : hydro versus HBT, sensibilité à l'EoS ?
⇒ discussions avec Jean-Yves : un fluide pas si idéal !!

Quarks constituants (1)

PHENIX PRL91(2003)182301 STAR PRL92(2004)052302

Les degrés de liberté qui priment sont des <u>quarks</u> <u>constituants</u>

Un flot est créé au niveau partonique, et accréditant les modèles de <u>coalescence</u> de quarks

Quarks constituants (2)

Perte d'énergie des partons et pQCD

⇒ Talk de David « Jet quenching à RHIC »

A just ement avec pQCD ($\subset \Delta E$ des partons)

□ dN_{gluon}/dy ~ 1100 au début de l'expansion

~30-50 la densité de gluons de la matière froide

GLV : I. Vitev, JPG30(2004)5791 + I Vitev, M Gyulassy PRL89(2002)252301

Tomographie du milieu dense

Des points à éclaircir

Que devient la perte d'énergie ?

 \Box pQCD reproduit qualitativement la suppression mais \exists des aspects importants de $\triangle E$ des partons :

- rayonnement induit et son interaction dans le milieu
- différence gluon/quark (u,c...)

 \Box Constance du R_{AA} avec p_T

- GLV : compromis entre ΔE ,
- Cronin, shadowing
- WW : feedback du domaine

des p_T intermédiaires

• EHSW : compromis entre ΔE et le spectre en p_T des partons

dont la pente augmente avec p_T

<u>R_{AA} insensible au milieu pour q>5GeV²/fm</u> production des particules « épidermiques » non supprimées même aux densités les plus élevées. CGC

En résumé du SWP (1)

On sait qu'il s'agit d'une matière extrêmement dense qui thermalise très rapidement. Des premières estimations de la densité d'énergie à partir de $dE_T/d\eta$ (à la Bjorken), de l'hydro et de la suppression des jets sont cohérentes et bien supérieures à la densité d'énergie nécessaire à un QGP, prédite par LQCG (~10 - 15 GeV/fm³).

MAIS:

- > Il n'y a (jusqu'à présent) aucune preuve directe (univoque) que :
 - Cette matière est déconfinée
 - Les premiers degrés de liberté de cette matière sont des quarks et des gluons
- Besoin d'une meilleure compréhension de la sensibilité réelle de l'hydro à l'EoS, améliorer la compatibilité des descriptions des spectres, v₂, HBT,....
- Pas de conclusions quantitatives sur les propriétés de cette matière qui demande une description au-delà d'un scénario purement hadronique

En résumé du SWP (2)

Du travail supplémentaire pour prouver que c'est le QGP selon la définition formulée initialement.

Dans un futur proche :

soft sector:

- Flow elliptique du charme ouvert
- Systématiques du v_2 (+de particules et de stat.)
- · Di-leptons de basse masse
- Photons directs

jets et hard probes:

- Pt plus élevés;
- Suppression des quarks lourds (perte d'énergie)

Coalescence des guarks

Hydrodynamique et thermalisation

Meilleur accord pour une EOS(Q) P. Huovinen PLB503(2001)58

<p_> et équilibre

