

<mark>Plอn</mark>

✓ Pourquoi une nouvelle méthode d'alignement ?

Plan But Spectromètre Méthode Contraintes Résultats Futur

- Le spectromètre à muons
- Présentation de la méthode
- ✓ Contraintes
- Présentation des résultats
- Améliorations futures

Pourquoi une nouvelle méthode d'alignement ?

Désalignements à cause des réparations entre 2 prises de données, de la mise en route du champ magnétique...

0

Plan But Spectromètre Méthode Contraintes Résultats Futur

Méthode itérative actuelle

- Basée sur des détecteurs de référence supposés alignés, utilisés dans le PR pour aligner les autres
- Ne prend en compte qu'une partie moyennée des informations (distribution moyenne des résidus)
- Alignement fait à la main, de façon itérative
 - beaucoup de traitement de données
- Convergence pas assurée
 - Les résultats biaisés changent si d'autres détecteurs de référence sont utilisés

Nouvelle méthode globale

Tous les détecteurs sont utilisés dans le PR

Minimisation du $\sum \chi^2$ de trace en une fois

- > Seulement une reconstruction
- Résultats optimum

Remarque:

 Un nombre limité de détecteurs de référence sont fixés de façon arbitraire pour empécher les transformations globales du spectromètre

Le Traceur de Muons - MuTr

Qu'est-ce qui peut-être mal aligné ? Plan MuID 6 panneaux 5 plans 120 détecteurs 2 bras But 2 orientations Spectromètre MuTr 2 0 MuID Au total Méthode **696 detecteurs** Contraintes sont considérés ZDC South Résultats indépendants 5 MuID 4 Futur

Catherine SILVESTRE

Méthode [1/2]

Présentation

Plan

But

Spectromètre

Algorithme

Paramètres

Contraintes

Résultats

Futur

~

✓

Méthode

- **M. Blobel, théoricien allemand: code en fortran**
- COMPASS & ALICE

Minimisation d'une trace

• Pour chaque détecteur: minimisation de la différence entre le coup mesuré et le coup résultant de l'ajustement

Annulation des dérivées
$$2 \exp \left[\frac{|w_{det} - w_{fit}(\alpha_{trk}, \alpha_a)|^2}{\sigma_{det}^2} - \frac{1}{2} \frac{\partial \chi^2}{\partial \alpha_i} \right] = \sum_{det} \frac{1}{\sigma_{det}^2} \left(\frac{\partial w_{fit}}{\partial \alpha_i} w_{det} - \sum_k \frac{\partial w_{fit}}{\partial \alpha_i} \frac{\partial w_{fit}}{\partial \alpha_k} \alpha_k \right) = 0$$

D'où

$$\begin{pmatrix} \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{1}} \frac{\partial w_{fit}}{\partial \alpha_{1}} & \cdots & \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{1}} \frac{\partial w_{fit}}{\partial \alpha_{i}} & \cdots \\ \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{i}} \frac{\partial w_{fit}}{\partial \alpha_{1}} & \cdots & \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{i}} \frac{\partial w_{fit}}{\partial \alpha_{i}} & \cdots \\ \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{i}} \frac{\partial w_{fit}}{\partial \alpha_{i}} & \cdots & \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{i}} \frac{\partial w_{fit}}{\partial \alpha_{i}} & \cdots \\ \begin{pmatrix} \alpha_{i} \\ \vdots \end{pmatrix} = - \begin{pmatrix} \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{1}} w_{det} \\ \vdots \\ \sum_{det} \frac{1}{\sigma_{det}^{2}} \frac{\partial w_{fit}}{\partial \alpha_{i}} w_{det} \end{pmatrix}$$

Catherine SILVESTRE

Etretat - le 29 juin 2005

Plan But

Spectromètre

Méthode

Algorithme Paramètres Contraintes Résultats Futur Fonction des paramètres de traces de chaque traces

 $\chi^2 = \sum \chi_i^2$

• Un seul jeu de paramètres d'alignement

$$\begin{pmatrix} \sum C_i & \cdots & G_i & \cdots \\ \vdots & \ddots & 0 & 0 \\ G_i^T & 0 & \Gamma_i & 0 \\ \vdots & 0 & 0 & \ddots \end{pmatrix} \begin{pmatrix} \alpha_a \\ \vdots \\ \alpha_{t,i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \sum b_i \\ \vdots \\ \beta_i \\ \vdots \end{pmatrix}$$

Minimisation de n traces

4 paramètres de traces 2000 traces 3 paramètres d'alignement 576 détecteurs Dimention de la matrice 4 × 2000 + 3 × 576!

C_i et b_i ne dépendent que de $\partial w_j / \partial \alpha_a$ Γ_i, β_i ne dépendent que de $\partial w_j / \partial \alpha_{trk}$ G_i inclu des termes mixtes $(\partial w_j / \partial \alpha_a)(\partial w_j / \partial \alpha_{trk})$ Les 0 proviennent de l'indépendence entre les paramètres

Catherine SILVESTRE

Séminaire RHIC France

Etretat - le 29 juin 2005

Dépendance des paramètres d'alignement [2/4]

 \checkmark **Résidus** $\langle \Delta w \rangle = w_{det} - w_{fit}$

sensible à un désalignement en x et y

Sans désalignement

htemp residu[2] {abs(residu[2])<2 && am ==1 && octant==0 && half_octant[2]==0&&flag[2]==1) Entries 754 -0.002987 Mean RMS 0.1139 220 200 180 160 140 120 100 80 60 40 20 0± -1.5 -1 -0.5 0 0.51

Désalignement: $\delta x = 0.1cm$, $\delta y = 0.1cm$

- » Bras nord, station 0, chambre 1
- » Détecteur désactivé avant reconstruction

 $\checkmark \text{$ **Résidus vs w** $_{fit}} \frac{\partial \langle \Delta w \rangle}{\partial w}$ sensible à un désalignement en z

Sans désalignement

Désalignement: $\delta z = 10cm$

- » Bras nord, station 0, chambre 1
- » Détecteur désactivé avant reconstruction

Dépendance des paramètres d'alignement [4/4]

✓ **Résidus vs v_{fit}** $\partial \langle \Delta w \rangle / \partial v$ sensible à un désalignement en φ

Sans désalignement

Désalignement: $\delta \varphi = 0.01^{\circ}$

- » Bras nord, station 0, chambre 1
- » Détecteur désactivé avant reconstruction

Contraintes sur l'alignement

Plan But Spectromètre Méthode Contraintes Résultats Futur

Contraintes pour empécher des transformations globales • Fixer des détecteurs de références

 $\delta_W > 4$ détecteurs fixés pour empécher $\delta x, \delta y = cte \operatorname{et} \delta x(z), \delta y(z) \propto z$ $\delta z > 2$ détecteurs fixés pour empécher $\delta z = cte \operatorname{et} \delta z(z) \propto z$ $\delta \varphi > 2$ détecteurs fixés pour empécher $\delta \varphi = cte \operatorname{et} \delta \varphi(z) \propto z$

• Dans la pratique

 2 premiers et 2 derniers plans de cathodes de chaque bras, pour tous les paramètres d'alignement

Simulation sans désalignement

Caller nie SIL v ESI KE

Summany many france

Etretat - 1e 29 juin 2005

13/17

Simulation avec un désalignement aléatoire [1/2]

550 Index detector

550 Index detector

Index detector

•Simulation:

-utilisation de fichiers Pythia de J/Psi purs, sans champ magnétique

-des désalignements ont été introduits à la main avant la reconstruction à partir d'un fichier texte

Simulation avec un désalignement aléatoire [2/2]

Pulls pull_phi pull_w pull z y2 / ndt 45.07/33 y? / ndi 53.59732 thn/^ey 41.01/ 32 $\Delta w_{true} - \Delta w_{reco}$ 33.1± 2.3 Constant Plan 29.45±2.35 Constant 26.78±2.09 Constant $\delta \Delta w$ 0.02609±0.04457 -0.1945±0.0512 laam 0.04856+ 0.0557 But 0815±0035 Sigma 0.9271±0.0577 1.021± 0.055 Spectromètre $\Delta z_{true} - \Delta z_{reco}$ $\delta \Delta z$ Méthode Contraintes Résultats $\frac{\Delta \varphi_{true} - \Delta \varphi_{reco}}{\delta \Delta \varphi}$ Simulation Réelles Futur -5-4-3-2-10 1 2 3 4 5 -3-2-1012345 -5-4-3-2-1012345

Alignement pas parfait, mais résultats statistiquement corrects - seulement une reconstruction

- statistique optimale: 8000 évènements, 10 fichiers (6h)

Catherine SILVESTRE

Séminaire RHIC France

Etretat - le 29 juin 2005

Désalignements observés sur les données réelles

•Données réelles:

utilisation des données proton-proton de la prise de données 4 (run 4)

Ordre de grandeur des désalignements raisonable

2^e étape des données réelles:

- **Introduction des désalignements**
 - > Distribution des pulls ?
 - > Amélioration de la qualité des traces ?
- Alignement sans champ magnétique avec le MuID
- Simulation avec champ magnétique
- Données réelles avec champ magnétique
 - Nombre et qualité des traces reconstruites par événement avant / après l'alignement
 - Évaluer l'impact sur la résolution de la masse invariante du J/Psi: amélioration ?
 - o Amélioration de la distribution du DG0

But Spectromètre Méthode Contraintes

Plan

Résultats

Futur

Algorithme détaillé

Single Track Minimization 2/2

Minimization

$$-\frac{1}{2}\frac{\partial\chi^2}{\partial\alpha_i} = \sum_j \frac{1}{\sigma_j^2} \left(\frac{\partial w_j}{\partial\alpha_i} w_{det} - \sum_k \frac{\partial w_j}{\partial\alpha_i} \frac{\partial w_j}{\partial\alpha_k} \alpha_k \right) = 0$$

Resulting

$$\begin{pmatrix} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{1}} \frac{\partial w_{j}}{\partial \alpha_{1}} & \cdots & \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{1}} \frac{\partial w_{j}}{\partial \alpha_{i}} & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{i}} \frac{\partial w_{j}}{\partial \alpha_{1}} & \cdots & \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{i}} \frac{\partial w_{j}}{\partial \alpha_{i}} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{i} \\ \vdots \end{pmatrix} = - \begin{pmatrix} \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{1}} w_{j}^{0} \\ \vdots \\ \sum_{j} \frac{1}{\sigma_{j}^{2}} \frac{\partial w_{j}}{\partial \alpha_{i}} w_{j}^{0} \\ \vdots \end{pmatrix}$$

Global minimization 1/2

Minimizing a set of n tracks

$$\chi^2 = \sum_{i=1}^n \chi_i^2$$

It depends on a different set of track parameters for each track, and a single set of alignment parameters => the related matrix system can be inverted if a number large enough of tracks is considered.

$$\begin{pmatrix} \sum C_i & \cdots & G_i & \cdots \\ \vdots & \ddots & 0 & 0 \\ G_i^T & 0 & \Gamma_i & 0 \\ \vdots & 0 & 0 & \ddots \end{pmatrix} \begin{pmatrix} \alpha_a \\ \vdots \\ \alpha_{t,i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \sum b_i \\ \vdots \\ \beta_i \\ \vdots \end{pmatrix}$$

4 param/tracks 2000tracks 3 param/detect 576 detectors matrix dimension 4 × 20000 + 3 × 576 !

C_i and b_i depend only on $\partial w_j / \partial \alpha_a$ Γ_i, β_i depend only on $\partial w_j / \partial \alpha_{trk}$ G_i includes mixed terms of $(\partial w_j / \partial \alpha_a)(\partial w_j / \partial \alpha_{trk})$ The 0 come from the independency between the tracks

Global minimization 2/2

The matrix structure allows to invert only 20000 matrices (4×4) + 1 matrix 2148 ×2148

Matrix inversion

Reduced system

alignment parameters

$$\alpha_a = C^{-1} b'$$

with
$$C' = \sum_{i} C_{i} - \sum_{i} G_{i} \Gamma_{i}^{-1} G_{i}^{T}$$
 $b' = \sum_{i} b_{i} - \sum_{i} G_{i} \Gamma_{i}^{-1} \beta_{i}^{T}$

See reference: http://www.desy.de/~blobel/wwwmille.html

Catherine SILVESTRE

Magnetic Field Off

How to get the derivatives ?

$$w_{fit}(z_{det}) = \begin{bmatrix} \cos(\theta_{det} + \delta\theta) [x_0 + tx_0(z_{det} + \delta z - z_0)] \\ \sin(\theta_{det} + \delta\theta) [y_0 + ty_0(z_{det} + \delta z - z_0)] \end{bmatrix} + \delta w$$

1 -

Track parameters:

track coordinates at z: (x,y)
$$\frac{\partial w}{\partial x} = \cos \theta_{det}$$
$$\frac{\partial w}{\partial y} = \sin \theta_{det}$$

track angle: (tx,ty)
$$\frac{\partial w}{\partial tx} = \cos \theta_{det} (z_{det} - z_0)$$
$$\frac{\partial w}{\partial ty} = \sin \theta_{det} (z_{det} - z_0)$$

Alignment parameters:

$$\frac{\partial w}{\partial \delta w} = -1$$

$$\frac{\partial w}{\partial \delta z} = tx_0 \cos \theta + ty_0 \sin \theta$$

$$\frac{\partial w}{\partial \delta \theta} = -\sin[x_0 + tx_0(z_{det} - z_0)] + \cos \theta [y_0 + ty_0(z_{det} - z_0)]$$

Catherine SILVESTRE

Magnetic Field Off

Aligned track coordinates for one detector

$$w_{fit}(z_j) = \begin{bmatrix} \cos(\theta_{det} + \delta\theta) [x_{0,j} + tx_j \delta z + \delta x_0 + \delta t x_0 (z_j + \delta z - z_0)] \\ \sin(\theta_{det} + \delta\theta) [y_{0,j} + ty_j \delta z + \delta y_0 + \delta t y_0 (z_j + \delta z - z_0)] \end{bmatrix} + \delta w$$

<u>Hypothesis</u> Δw_{fit} is linear with z

The expression of the derivatives is equal to the one without field except for the use of **local** track parameters

The measurement is now Δw_{fit} instead of w_{fit}

Summary of the Method

20 000 events needed to have very acurate results

Calculate track parameters derivatives $\partial res_{trk,det} / \partial \alpha_{a,det}$

Calculate detectors parameters derivatives $\partial res_{trk,det} / \partial \alpha_{trk,det}$

Invert matrix

Catherine SILVESTRE

Paramètres

Paramètres de trace (cas de traces droites)

• (x_0, y_0) et $(t_{x,0}, t_{y,0})$ eront regroupés sous α_{trk} • Notation

- Les paramètres d'alignement seront notés α_a
- Minimization d'une trace

$$\chi^{2} = \sum_{j=1}^{n_{det}} \frac{\left| w_{det} - w_{fit}(\alpha_{trk}, \alpha_{a}) \right|^{2}}{\sigma_{j}^{2}}$$

- Pour chaque détecteur on veux que la différence entre le coup mesuré et le coup résultant de l'ajustement soit la plus petite possible
- Hypothèse
 - $^{\rm o}$ ${\rm w}_{\rm fit}$ dépend linéairement des paramètres de traces et d'alignement ${\cal C}_{trk}$

$$\alpha_a \qquad w_{fit} = \sum \frac{\partial w_{fit}}{\partial \alpha} \alpha_k$$

Critères de qualité

Critères absolus

• Vérification que les paramètres $\langle \Delta w \rangle$, $\partial \langle \Delta w \rangle / \partial w$ et $\partial \langle \Delta w \rangle / \partial v$ sont nuls.

Critères relatifs

- Nombre et qualité des traces reconstruites par événement avant / après l'alignement
- Amélioration de la résolution de la masse du J/Psi après alignement

Comparaison directe

 Estimation sur des données simulées: comparaison entre les valeurs des désalignements introduits à la main et ceux obtenus après alignement