Particules de grandes impulsions transverses au RHIC

Carlos A. Salgado

Physics Department CERN, TH-Division

carlos.salgado@cern.ch, http://home.cern.ch/csalgado

Journées RHIC–France, Etretat, Juin 2005

Jet quenching

- \Rightarrow Suppression of light particles at high- p_t observed at RHIC.
 - Well described by energy loss due to medium-induced gluon radiation
 - Problems: surface emission, trigger bias...

Jet quenching

- \Rightarrow Suppression of light particles at high- p_t observed at RHIC.
 - Well described by energy loss due to medium-induced gluon radiation
 - → Problems: surface emission, trigger bias...
- \Rightarrow Measure the structure of radiated particles \rightarrow jets

Jet quenching

- \Rightarrow Suppression of light particles at high- p_t observed at RHIC.
 - Well described by energy loss due to medium-induced gluon radiation
 - → Problems: surface emission, trigger bias...
- \Rightarrow Measure the structure of radiated particles \rightarrow jets
- \Rightarrow Change the composition of the primary \rightarrow heavy quarks

Medium-induced gluon radiation (m=0)

Journées RHIC–France, Etretat, Juin 2005

Angular distribution

The same spectrum in different variables ω/ω_c , $k_t^2/\sqrt{\omega \hat{q}}$

 $k_t/(\omega q)^{1/4}$

So the radiation is suppressed for

$$\sin\theta \lesssim \sqrt{\sqrt{\frac{\hat{q}}{\omega^3}}}$$

Application of the formalism

[Eskola, Honkanen, Salgado, Wiedemann (2004)]

 \Rightarrow Data favors a large time-averaged transport coefficient

$$\hat{q} \sim 5 \dots 15 \frac{GeV^2}{fm}$$

[Many other groups describe these data: Gyulassy, Levai, Vitev, Wang, Drees, Feng, Jia, Arleo, Dainese, Loizides, Paic...]

Journées RHIC–France, Etretat, Juin 2005

Centrality dependence

$\hat{q} \propto {\rm density}$

Opacity problem

$$\Rightarrow \hat{q} = c\epsilon^{3/4} \text{ for an ideal QGP } c_{ideal}^{QGP} \sim 2$$

$$\Rightarrow \text{ We obtain [Eskola, Honkanen, Salgado, Wiedemann (2004)]}$$

$$\bar{q} = \frac{2}{L^2} \int_{\tau_0}^{\tau_0 + L} d\tau (\tau - \tau_0) \hat{q}(\tau) \Longrightarrow$$

$$c = \frac{\hat{q}}{\epsilon^{3/4}(\tau_0)} \frac{2 - \alpha}{2} \left(\frac{L}{\tau_0}\right)^{\alpha} \Rightarrow \boxed{c > 5c_{ideal}^{QGP}}$$

$$[\text{taking } \epsilon(\tau_0) < 100 \frac{\text{GeV}}{\text{fm}^3}, L/\tau_0 \sim 10, \alpha = 1]$$

⇒ Remember \hat{q} proportional to the density times cross section ⇒

The interaction of the hard parton with the medium is much stronger than expected.

Corona effect

The medium produced at RHIC is so dense that only particles produced close to the surface can escape.[Muller (2003)]

[Dainese, Loizides, Paic (2004); Eskola, Honkanen, Salgado, Wiedemann (2004)]

Corona effect

The medium produced at RHIC is so dense that only particles produced close to the surface can escape.[Muller (2003)]

[Dainese, Loizides, Paic (2004); Eskola, Honkanen, Salgado, Wiedemann (2004)]

Trigger bias \Rightarrow Steepness of the spectrum $\frac{d\sigma}{dp_t} \sim \frac{1}{p_t^n} \Longrightarrow$ small z, ϵ

 \Rightarrow High- p_t hadrons are fragile objects – more fragile the highest the p_t

[Eskola, Honkanen, Salgado, Wiedemann (2004)]

Journées RHIC–France, Etretat, Juin 2005

Heavy quarks

Journées RHIC–France, Etretat, Juin 2005

Vacuum radiation: Dead cone effect

Dead cone effect Angles smaller than $\theta_0 \equiv m/E$ are suppressed in vacuum radiation [Dokshitzer, Khoze, Troyan (1991)]

$$\omega \frac{dI_{\text{vac}}}{d\omega dk_t^2} \sim \frac{1}{k_t^2} \longrightarrow \omega \frac{dI_{\text{vac}}^m}{d\omega dk_t^2} \sim \frac{k_t^2}{\left[k_t^2 + \omega^2 \theta_0^2\right]^2}$$

Vacuum radiation: Dead cone effect

Dead cone effect Angles smaller than $\theta_0 \equiv m/E$ are suppressed in vacuum radiation [Dokshitzer, Khoze, Troyan (1991)]

$$\omega \frac{dI_{\text{vac}}}{d\omega dk_t^2} \sim \frac{1}{k_t^2} \longrightarrow \omega \frac{dI_{\text{vac}}^m}{d\omega dk_t^2} \sim \frac{k_t^2}{\left[k_t^2 + \omega^2 \theta_0^2\right]^2}$$

Journées RHIC–France, Etretat, Juin 2005

Heavy quark energy loss

 \Rightarrow Dokshitzer & Kharzeev 2001 took $\theta \sim \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$

 \Rightarrow Medium-induced gluon radiation is reduced in the mass case \implies less energy loss for heavy than for light quarks.

Medium-induced gluon radiation: massive case

More refined calculations of the double differential spectrum of heavy quarks reveal a richer structure

[Armesto, Salgado, Wiedemann (2004)]

 \Rightarrow New phase term in the massive case:

$$\varphi = \left\langle \frac{k_{\perp}^2}{2\omega} \,\Delta z \right\rangle \longrightarrow \left\langle \frac{k_{\perp}^2}{2\omega} \,\Delta z + \bar{q} \,\Delta z \right\rangle; \ \bar{q} \simeq \frac{x^2 M^2}{2\omega}; \ \left[x = \frac{\omega^2}{E^2} \right]$$

[Similar results: Djordjevic, Gyulassy (2003); Zhang, Wang, Wang (2004)]

Journées RHIC–France, Etretat, Juin 2005

Angular distribution

\Rightarrow The angular distribution is modified

Angular distribution

\Rightarrow The angular distribution is modified

 \Rightarrow The effect of the mass in the medium case is

- Suppress radiation at large angle
- Enhance (moderately) at small angle

 \Rightarrow Net effect: the energy loss is smaller in the massive case

Energy spectrum for different masses

 $R \equiv \omega_c \, L$

Notice that the effect of the mass increases with the length L

Practical applications

Journées RHIC–France, Etretat, Juin 2005

Formalism

$$d\sigma_{\text{(med)}}^{AA \to h+X} = d\sigma_{\text{(vac)}}^{AA \to h+X} \otimes P\left(\frac{\Delta E}{\omega_c}, R, \frac{m}{E}\right) \otimes D_{f \to h}^{\text{(vac)}}$$

 $\Rightarrow P\left(\frac{\Delta E}{\omega_c}, R, \frac{m}{E}\right) \text{ probability of losing } \Delta E \text{ due to medium-induced radiation } (R = \omega_c L)$ $\Rightarrow \text{ In the vacuum}$

$$P\left(\frac{\Delta E}{\omega_c}, R, \frac{m}{E}\right) = \delta(\Delta E)$$

⇒ We tuned PYTHIA to reproduce the shape of the data from STAR on the *D* meson p_t distribution in dAu.

[Armesto, Dainese, Salgado, Wiedemann (2005); Same method as in Dainese, Loizides, Paic (2004)]

Quenching weights

 \Rightarrow In the independent gluon emission approximation [Baier et al (2001)]

[Armesto, Dainese, Salgado, Wiedemann (2005)] [tabulated in: http://www.pd.infn.it/~dainesea/qwmassive.html]

Journées RHIC–France, Etretat, Juin 2005

Geometry

 $\hat{q}(\xi) = kT_A(\mathbf{s} + \xi\mathbf{n})T_B(\mathbf{b} - [\mathbf{s} + \xi\mathbf{n}])$

$$\omega_c = \int_0^\infty d\xi \,\xi \,\hat{q}(\xi) \;; \quad R = \frac{2\omega_c^2}{\int_0^\infty d\xi \,\hat{q}(\xi)}$$

[Dainese, Loizides, Paic (2004); Armesto, Dainese, Salgado, Wiedemann (2005)]

Journées RHIC–France, Etretat, Juin 2005

Results for RHIC

[Armesto, Dainese, Salgado, Wiedemann (2005)]

Journées RHIC–France, Etretat, Juin 2005

Comparison with preliminary data

Almost the same suppression as for light quarks

Surface emission with mass terms

Suppression for charm and light quarks very similar unexpected?
 Remeber that mass effects small for small lenghts

Surface emission with mass terms

Suppression for charm and light quarks very similar unexpected?
 Remeber that mass effects small for small lenghts

Massive over light particle ratio

[Armesto, Dainese, Salgado, Wiedemann 2005]

 $\Rightarrow \text{Quark vs gluon energy loss:} \\ \Delta E^g = N_C / C_F \Delta E^{q, m=0}$

 \checkmark Increases $R_{D/h}$

Light-particle spectrum slope larger than massive one

 \mathbf{Y} Increases $R_{D/h}$

 \Rightarrow charm fragmentation harder

Decreases $R_{D/h}$

- Heavy quark suppression of gluon radiation ('dead-cone')
 - Increases $R_{D/h}$

⇒ Extrapolation according to the expected density ($\hat{q} \propto$ density) ⇒ We take a factor 7 from Eskola *et al* (2000) [probably too large]

[Armesto, Dainese, Salgado, Wiedemann (2005)]

 \Rightarrow D/h and B/h ratios for the LHC

[Armesto, Dainese, Salgado, Wiedemann (2005)]

 \Rightarrow Inclusive particle measures the density of the medium: $\Delta E \propto \alpha_S \hat{q} L^2$

 \Rightarrow Inclusive particle measures the density of the medium: $\Delta E \propto \alpha_S \hat{q} L^2$

 \Rightarrow The jet broadening $\langle k_t^2 \rangle \sim \hat{q}L$

Jet shapes in the $\eta \times \phi$ plane.

Vacuum (reference)

Jet shapes in the $\eta \times \phi$ plane.

Vacuum (reference)

Medium: broadening

Journées RHIC–France, Etretat, Juin 2005

Journées RHIC–France, Etretat, Juin 2005

Journées RHIC–France, Etretat, Juin 2005

Journées RHIC–France, Etretat, Juin 2005

Jet shapes

 $\rho(R), \text{ fraction of the jet energy}$ inside a cone $R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ $\rho_{\text{vac}}(R) = \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{E_t(R)}{E_t(R=1)}$ $\rho_{\text{med}} = \rho_{\text{vac}} - \frac{\Delta E_t(R)}{E_t(R=1)}$ $+ \frac{\Delta E}{E_t} (1 - \rho_{\text{vac}}(R))$

Small modification \rightarrow can jet energy be determined experimentally above background?? Scaling with number of collisions for large cone angle.

Small sensitivity to IR cuts

[Salgado, Wiedemann (2003)] Journées RHIC–France, Etretat, Juin 2005

The characteristic angular distribution of the medium-induced gluon radiation could be better observed in the quantity

$$\frac{dN^{\rm jet}}{dk_{\perp}} = \int_{k_{\perp}/sin\theta_c}^E d\omega \frac{dI}{d\omega dk_{\perp}}$$

For the vacuum we simply use

$$\frac{dI_{\rm vac}}{d\omega dk_{\perp}} \sim \frac{1}{\omega} \frac{1}{k_{\perp}}$$

Needs a more quantitative analysis (hadronization...).

But, effect based mainly on kinematics remember $k_t^2 \sim \hat{q} L (\sim Q_{\rm sat}^2)$

The fact that the results show small sensitivity to IR cuts is due to the shape of the spectrum

 \Rightarrow As we have seen, this is due to formation time effects.

Jet shapes in a flowing medium

<u>Vacuum</u> (reference) Medium: broadening

Jet shapes in a flowing medium

<u>Vacuum</u> (reference)

Medium:

broadening

Flowing medium: anisotropic shape

Formalism

In the single-hard scattering approximation

$$\omega \frac{dI^{\text{med}}}{d\omega \, d\mathbf{k}} = \frac{\alpha_s}{(2\pi)^2} \frac{4 \, C_R \, n_0}{\omega} \, \int d\mathbf{q} \, |\mathbf{a}(\mathbf{q})|^2 \, \frac{\mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2} \, \frac{-L \frac{(\mathbf{k} + \mathbf{q})^2}{2\omega} + \sin\left(L \frac{(\mathbf{k} + \mathbf{q})^2}{2\omega}\right)}{\left[(\mathbf{k} + \mathbf{q})^2/2\omega\right]^2} \,,$$

we shift the Yukawa potential by a 3-momentum $q_0 = (\mathbf{q_0}, q_l)$ proportional to the flow field.

(Armesto, Salgado, Wiedemann hep-ph/0405301)

$$|a(\mathbf{q})|^{2} = \frac{\mu^{2}}{\pi \left[\mathbf{q}^{2} + \mu^{2}\right]^{2}} \longrightarrow \frac{\mu^{2}}{\pi \left[(\mathbf{q} - \mathbf{q}_{0})^{2} + \mu^{2}\right]^{2}}.$$

 \Rightarrow In the comoving frame $\langle k^2 \rangle \sim \mu^2$, $\Delta E \sim \alpha_S n_0 \mu^2 L^2$. \Rightarrow \mathbf{q}_0 characterizes the additional (asymmetric) momentum transfer.

Jet energy distribution

Where to look for

Longitudinal flow: jets are not in the longitudinally comoving frame

η=0

For symmetric $\Delta \eta$ our previous results need to be symmetrized by adding the corresponding $\pm q_0$.

Where to look for

Longitudinal flow: jets are not in the longitudinally comoving frame

Radial flow

For symmetric $\Delta \eta$ our previous results need to be symmetrized by adding the corresponding $\pm q_0$.

Could it be seen in the elliptic flow v_2 ?

Longitudinal flow

Jet energy distributions for a flow directed in the $\pm z$ directions.

 $E_{
m jet} = 100~{
m GeV}$, $\Delta E =$ 23 GeV. $q_0 = \mu$

Longitudinal flow

Jet energy distributions for a flow directed in the $\pm z$ directions.

Estimation of the effect for the case of RHIC (STAR preliminary)

Band corresponds to $q_0/\mu = 2 \div 4$ Broadening in the η -direction more important than in ϕ -direction.

Elongation in η **-direction**

[STAR preliminary, D. Magestro HP04]

Journées RHIC–France, Etretat, Juin 2005

Inclusive particle and elliptic flow

$$\Delta E \sim \omega_c(\mathbf{r_0}, \phi) = \int d\xi \xi \left(q_{nf} + q_f | u_T(\mathbf{r_0}(\xi)) \cdot \mathbf{n}_T |^2 \right) \Omega(\mathbf{r_0}, \phi)$$

- ⇒ Correlation of the suppression w.r.t the reaction plane (v_2) affected by the flow component.
- ⇒ More flow ⇒ smaller density for the same suppression

Associated particles

Where does the 'away-side jet' go? \implies smaller p_t associated particles.

- \Rightarrow Not jet-like structure in the backwards hemisphere
 - \rightarrow Thermalization of the high- p_t particle??
 - Sonic shock waves?? [Casalderrey-Solana, Shuryak, Teaney]

Large angle radiation

Remember the spectrum

In qualitative agreement with the away-side signal ?

Conclusions

- Inclusive particle production presents limitations in the characterization of the medium.
 - Study less inclusive observables
- \Rightarrow Heavy quarks: Smaller medium-induced radiation
 - Surface emission makes the mass effect smaller
 - \rightarrow LHC will measure mass effects in a large p_t range with B mesons
- Jet-broadening directly related to energy loss by medium-induced gluon radiation.
- Measure jet structure in HIC (control over multiplicity background).
- A flow field in the medium produces additional (anisotropic) gluon radiation
 - Asymmetric jet shapes (elongation in η -direction).
 - Solution Contributes to v_2 and suppression (can this explain the opacity problem?)